Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique to make objects invisible proposed

28.11.2018

Researchers at the University of Extremadura have demonstrated the electromagnetic invisibility of objects using an alternative technique, based on filler cloaking

In recent years, invisibility has become an area of increasing research interest due to advances in materials engineering.


Interaction of light with a hollow sphere of silicon (A) and with the same sphere filled with a potion composed of three different strata (B).

Credit: UEx

This research work by the UEx, which has been published in Scientific Reports by the Nature Group, has explored the electromagnetic properties of specific materials which can make certain objects invisible when they are introduced into its interior, in the manner of fillers.

Normally, artificial materials known as metamaterials, or materials with high dielectric or magnetic constants, are used

This idea for attaining invisibility using filler materials instead of external layers, was inspired by the Final-Year Project of Alberto Serna and Luis Molina, undergraduate students of Telecommunications at the UEx.

"Although all of us think of the invisibility cloak of Harry Potter and this is the model that other scientists have used to invisibilize objects, up to now, the idea of fillers, previously suggested in the novel The Invisible Man by H.G. Wells, in which Griffin becomes invisible by injecting himself with a lightening agent", explains the researcher Alberto Serna, who is currently working on his doctoral thesis in the Telecommunications Group at the UEx .

Serna clarifies that "the majority of the techniques with which cloaks of invisibility are developed harness the extraordinary properties of certain materials to make light circumvent the object to be made invisible".

Nevertheless, this model cannot be implemented using fillers, because the object is exposed to the light and therefore forced to interact with it.

"We have used a different technique, plasmonic cloaking, which makes the object and the filler jointly invisible", says Serna from Italy, where he is currently on a research stay.

In this way, the method makes it possible to achieve invisibility from the interior of an object without using any external device. In addition, invisibility using fillers allows the object to interact with its environment without being hampered by the external cloaking. The technique is valid for objects of small size, and the bandwidths achieved are still narrow, but the investigators believe the scope for further improvements is promising.

New applications

Luis Landesa, who led this work, contends that the idea of fillers opens up a new array of applications "because the fact that an object can "see" the outside without hindrance from external layers is novel and promising".

The researchers suggest applications which range from using non-solid materials to uses in communications and bioengineering.

A typical example of the utility of invisibility is in invisible microscopic probes which do not perturb the device to be measured; with the use of fillers, in addition, the reading itself would not be altered, this being the problem posed by invisibility cloaks.

Media Contact

Marta Fallola Sánchez-Herrera
culturacientifica@unex.es
34-924-289-649

 @infouex

http://www.unex.es  

Marta Fallola Sánchez-Herrera | EurekAlert!
Further information:
https://www.unex.es/organizacion/servicios-universitarios/servicios/comunicacion/archivo/2018/octubre-de-2018/9-de-octubre-de-2018/proponen-una-nueva-tecnica-para-conseguir-la-invisibilidad-de-los-objetos#.W_v4gYdKgnQ
http://dx.doi.org/10.1038/s41598-018-32070-5

More articles from Power and Electrical Engineering:

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

nachricht New electrolyte stops rapid performance decline of next-generation lithium battery
11.10.2019 | DOE/Argonne National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>