Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could pave the way for simple color tuning of LED bulbs

30.04.2019

International collaboration demonstrates the possibility of tuning the color of a GaN LED by changing the time sequence at which the operation current is provided to the device

A new technique? The result of an international collaboration of scientists from Lehigh University, West Chester University, Osaka University and the University of Amsterdam?could pave the way for monolithic integration for simple color tuning of a light bulb, according to Volkmar Dierolf, Distinguished Professor and Chair of Lehigh's Department of Physics who worked on the project.


The top row is a GaN:Eu LED, which can be tuned from red-yellow due to red and green light mixing from different Eu states. The middle and bottom rows are of a GaN:Eu LED with additionally added Si/Mg, which adds blue emission. Each picture is under a different current injection/filtering condition.

Credit: West Chester University

"This work could make it possible to tune between bright white and more comfortable warmer colors in commercial LEDs," says Dierolf.

The team demonstrated the possibility of color tuning Gallium Nitride (GaN)-based GaN LEDs simply by changing the time sequence at which the operation current is provided to the device. Light-emitting diodes or LEDs are semiconductor devices that emit light when an electric current is passed through it. Notably, the technique is compatible with current LEDs that are at the core of commercial solid state LED lighting.

The work is described in an article published online in ACS Photonics called "Color-Tunablility in GaN LEDs Based on Atomic Emission Manipulation under Current Injection." The lead author, Brandon Mitchell, is a former graduate student in Dierolf's lab, now an assistant professor in the Department of Physics and Engineering at West Chester University in Pennsylvania.

In today's active LED displays, different colors are produced by three to four individual LEDs that are placed close to each other and create the different fundamental colors needed to produce the full color spectrum.

"We demonstrate that this can be achieved by a single LED." says Dierolf. "We show that is possible to attain red, green and blue emissions originating from just one GaN LED-structure that uses doping with a single type of rare earth ion, Europium (Eu). Using intentional co-doping and energy-transfer engineering, we show that all three primary colors can emit due to emission originating from two different excited states of the same Eu3+ ion (~620 nm and ~545nm) mixed with near band edge emission from GaN centered at ~430nm. The intensity ratios of these transitions can be controlled by choosing the current injection conditions such as injection current density and duty cycle under pulsed current injection."

In other words, the team achieved color-tunability in a single GaN-based LED through the manipulation of the emission properties of an atomic-type dopant.

Mitchell pointed out that "The main idea of this work - the simultaneous active exploitation of multiple excited states of the same dopant - is not limited to the GaN:Eu system, but is more general. The presented results could open up a whole new field of tunable emission of colors from a single dopant in semiconductors, which can be reached by simple injection current tuning."

According to Dierolf, this research may benefit those who are looking for more comfortable "warmer" white light from LEDs.

"It could pave the way for monolithic integration for simple color tuning of a light bulb," adds Dierolf. "It would also be beneficial for micro-LED displays, since it allows for higher density of pixels."

The materials used in previous research on color tunable LEDs did not allow for easy integration with current LED technology, he adds. This work is compatible with current GaN-based LEDs that are at the core of commercial solid state LED lighting.

Media Contact

Lori Friedman
lof214@lehigh.edu
610-758-3224

 @lehighu

http://www.lehigh.edu 

Lori Friedman | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht No more trial-and-error when choosing an electrolyte for metal-air batteries
15.07.2019 | Washington University in St. Louis

nachricht Solar power with a free side of drinking water
11.07.2019 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>