Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New milestone in printed photovoltaic technology

06.07.2016

A team of FAU researchers have achieved an important milestone in the quest to develop efficient solar technology as an alternative to fossil fuels. Together with colleagues from Imperial College London and the King Abdullah University of Science and Technology (KAUST), they have investigated a new molecule that can be used to increase the lifetime of organic solar cells considerably – while also making them more efficient. In their new technology the researchers succeeded in combining the factors that the energy market considers the most important for producing sustainable energy: module efficiency, lifetime and cost per watt.

They recently published their findings in the journal Nature Communications (doi: 10.1038/NCOMMS11585).

Organic solar cells are considered a competitive alternative to the standard silicon cells that are used in photovoltaics. They are incredibly thin, flexible and translucent, and can be integrated into window glass or used by architects as design elements in large lighting installations.

In contrast to the silicon cells that are often installed in photovoltaic systems on the roofs of buildings, organic solar cells are made of special semiconductor-based polymers called fullerenes – minute carbon molecules that look like footballs. Using fullerenes makes the cells highly efficient but also less durable, meaning that they are unable to match the standard technology over longer periods than 30 years, for example.

‘The environmental stability of these kinds of solar cells is not yet sufficient,’ says Prof. Dr. Christoph Brabec, Chair of Materials for Electronics and Energy Technology and renowned photovoltaics researcher and materials scientist.

However, that is about to change. FAU researchers led by Professor Brabec and materials scientist Nicola Gasparini, a doctoral candidate at FAU, have now managed to find an alternative to fullerenes. ‘We have identified a new organic molecule that is not based on fullerenes. Compared with other acceptors – which are an essential element in photovoltaics – it is in a class of its own in terms of functionality,’ Christoph Brabec explains. While fullerenes only absorb a very small amount of light, the new molecule is able to convert a very large amount.

The more sunlight absorbed, the higher the efficiency. ‘This is a major breakthrough for the international research community which has been looking for new cell technologies that can replace fullerene, reducing the cost of producing solar energy.’ According to Professor Brabec, this is what will make producing energy using photovoltaics a competitive alternative to fossil fuels. When determining the cost of producing energy, all of the costs that are required to convert the energy from the source (in this case the sun) into electricity are taken into account.

In their study the researchers demonstrated the record stability and efficiency of their newly developed polymer. ‘We measured a significantly higher air-stability, even at temperatures of up to 140 degrees,’ Professor Brabec explains. ‘And we expect to be able to produce stable solar cells with an efficiency of over ten percent using these materials.’

Another significant benefit is that the process used to print the new organic materials is less expensive. Instead of using expensive semiconductor technologies, the photovoltaic elements consisting of thin polymer substrates are produced on a production line where they are printed and coated. In addition, the solar films can be made in different colours. This will allow architects greater freedom when choosing colour combinations for their design and enable car manufacturers to install the special organic solar cells in glass roofs in their vehicles, for example. The new technology also opens up a whole new range of possibilities for the chemical industry to improve existing applications and develop new ones.

In light of all this, it is clear that the FAU researchers have succeeded in taking a major step forward in solar energy research. ‘The new findings highlight the excellent work and high standards of FAU researchers who work together in interdisciplinary teams,’ Christoph Brabec says. ‘This considerable milestone in the development of next-generation photovoltaic technologies is a testament to their superb research skills.’ The new solar modules were developed in close collaboration with Dr. Derya Baran from Imperial College London, who spent time researching at FAU after she completed her doctoral degree. The researchers also collaborated with King Abdullah University of Science and Technology (KAUST), Saudi Arabia, and Stanford University, USA.
Further information:

Prof. Dr. Christoph J. Brabec
Phone: +49 9131 8525426
christoph.brabec@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>