Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New explanation for sudden heat collapses in plasmas can help create fusion energy

31.03.2020

Scientists seeking to bring the fusion that powers the sun and stars to Earth must deal with sawtooth instabilities -- up-and-down swings in the central pressure and temperature of the plasma that fuels fusion reactions, similar to the serrated blades of a saw. If these swings are large enough, they can lead to the sudden collapse of the entire discharge of the plasma. Such swings were first observed in 1974 and have so far eluded a widely accepted theory that explains experimental observations.

Consistent with observations


PPPL physicist Stephen Jardin with figure from paper.

Photo and composite by Elle Starkman/PPPL Office of Communications.

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed a new theory to explain the swings that occur in doughnut-shaped tokamaks, or fusion facilities. The theory, created through high-fidelity computer simulations, appears consistent with observations made during tokamak experiments, the researchers said.

Understanding the process could prove vital to next-generation fusion facilities such as ITER, the international experiment under construction in France to demonstrate the practicality of fusion power.

Fusion combines light elements in the form of plasma -- the hot, charged state of matter composed of free electrons and atomic nuclei -- that generates massive amounts of energy. Scientists seeking to replicate fusion on Earth intend to provide a virtually inexhaustible supply of safe and clean power to generate electricity.

The recent findings demonstrate that when the pressure in the core of the plasma reaches a certain point, other instabilities can be excited that produce the sudden pressure and temperature drops.

These instabilities create jumbled -- or stochastic -- magnetic fields in the core of the plasma that cause the collapse, said physicist Stephen Jardin, lead author of a paper describing the process in Physics of Plasmas and highlighted in a featured American Institute of Physics publication called "SciLight."

"Most tokamak discharges exhibit sawteeth," Jardin said, "and we're trying to provide the theory of the physics behind them."

The new findings depart sharply from a long-held theory that causing the swings is an instability that leads to magnetic reconnection -- the breaking apart and snapping together of the magnetic field lines in plasma. "That theory has been around for over 40 years," Jardin said.

Motivating the new theory

Motivating the new theory is previous PPPL research that demonstrates how the instability that was thought to lead to magnetic reconnection can, in fact, self-stabilize the plasma. It does this by producing a localized voltage that prevents the current in the core of the plasma from peaking sufficiently to be subject to magnetic reconnection.

The new explanation holds that even though the magnetic reconnection is suppressed, an increase of heat in the core of the plasma can excite localized instabilities that act together to flatten the pressure and temperature during the sawtooth cycle.

Simulations produced by codes developed by Jardin and PPPL physicist Nate Ferraro, a coauthor of the paper, demonstrate this process. The new instabilities can grow very fast, consistent with the rapid collapse of heat seen in experiments that the traditional theory cannot explain.

This advanced model provides a new way to understand sawtooth phenomena. Looking ahead, the scientists want to explore the applicability of the model to tasks such as describing the evolution of "monster sawteeth" and using high powered Radio Frequency antennas to control sawtooth swings. "We want to develop a simulation model of a whole tokamak plasma," Jardin said, "and this new theory of the sawteeth is an important part of the effort."

###

Coauthors of the paper include Isabel Krebs, a former post-doctoral physicist at PPPL now at the Dutch Institute for Fundamental Energy Research (DIFFER), who developed the theory that the instability thought to cause temperature collapse could serve to stabilize the plasma. Support for the new research comes from the DOE Office of Science and the SciDAC Center for Tokamak Transient Simulations. Researchers developed the new simulations at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

Media Contact

John Greenwald
greenwald@comcast.net
609-610-6480

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!
Further information:
https://www.pppl.gov/news/2020/03/new-explanation-sudden-collapses-heat-plasmas-can-help-create-fusion-energy-earth
http://dx.doi.org/10.1063/1.5140968

More articles from Power and Electrical Engineering:

nachricht A spreadable interlayer could make solid state batteries more stable
19.05.2020 | Chalmers University of Technology

nachricht A new, highly sensitive chemical sensor uses protein nanowires
14.05.2020 | University of Massachusetts Amherst

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>