Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's billion-year-old battery key to storing energy

19.04.2012
Concordia physicists modify battery-like enzyme to produce carbon-neutral energy
New research at Concordia University is bringing us one step closer to clean energy. It is possible to extend the length of time a battery-like enzyme can store energy from seconds to hours, a study published in the Journal of The American Chemical Society shows.

Concordia Associate Professor László Kálmán — along with his colleagues in the Department of Physics, graduate students Sasmit Deshmukh and Kai Tang — has been working with an enzyme found in bacteria that is crucial for capturing solar energy. Light induces a charge separation in the enzyme, causing one end to become negatively charged and the other positively charged, much like in a battery.

In nature, the energy created is used immediately, but Kálmán says that to store that electrical potential, he and his colleagues had to find a way to keep the enzyme in a charge-separated state for a longer period of time.

“We had to create a situation where the charges don’t want to or are not allowed to go back, and that’s what we did in this study,” says Kálmán.

Kálmán and his colleagues showed that by adding different molecules, they were able to alter the shape of the enzyme and, thus, extend the lifespan of its electrical potential.

In its natural configuration, the enzyme is perfectly embedded in the cell’s outer layer, known as the lipid membrane. The enzyme’s structure allows it to quickly recombine the charges and recover from a charge-separated state.

However, when different lipid molecules make up the membrane, as in Kálmán’s experiments, there is a mismatch between the shape of the membrane and the enzyme embedded within it. Both the enzyme and the membrane end up changing their shapes to find a good fit. The changes make it more difficult for the enzyme to recombine the charges, thereby allowing the electrical potential to last much longer.

“What we’re doing is similar to placing a racecar in on snow-covered streets,” says Kálmán. The surrounding conditions prevent the racecar from performing as it would on a racetrack, just like the different lipids prevent the enzyme from recombining the charges as efficiently as it does under normal circumstances.

Photosynthesis, which has existed for billions of years, is one of the earliest energy-converting systems. “All of our food, our energy sources (gasoline, coal) — everything is a product of some ancient photosynthetic activity,” says Kálmán.

But he adds that the main reason researchers are turning to these ancient natural systems is because they are carbon neutral and use resources that are in abundance: sun, carbon dioxide and water. Researchers are using nature’s battery to inspire more sustainable, man-made energy converting systems.

For a peek into the future of these technologies, Kálmán points to medical applications and biocompatible batteries. Imagine batteries made of enzymes and other biological molecules. These could be used to, for example, monitor a patient from the inside post-surgery. Unlike traditional batteries that contain toxic metals, biocompatible batteries could be left inside the body without causing harm.

“We’re far from that right now but these devices are currently being explored and developed,” says Kálmán. “We have to take things step by step but, hopefully, we’ll get there one day in the not-too-distant future.”

Partners in Research: This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada.

Related Links:
Cited study
Kalman Group Website
Concordia’s Department of Physics
Source:
Cléa Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068
Email: clea.desjardins@concordia.ca
Twitter: twitter.com/concordia

Clea Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

Further reports about: battery battery-like enzyme energy source store energy toxic metal

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>