Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscience goes 'big'

08.01.2010
Nanoscience has the potential to play an enormous role in enhancing a range of products, including sensors, photovoltaics and consumer electronics.

Scientists in this field have created a multitude of nano scale materials, such as metal nanocrystals, carbon nanotubes and semiconducting nanowires. However, despite their appeal, it has remained an astounding challenge to engineer the orientation and placement of these materials into the desired device architectures that are reproducible in high yields and at low costs – until now.

Jen Cha, a UC San Diego nanoengineering professor, and her team of researchers, have discovered that one way to bridge this gap is to use biomolecules, such as DNA and proteins. Details of this discovery were recently published in a paper titled “Large Area Spatially Ordered Arrays of Gold Nanoparticles Directed by Lithographically Confined DNA Origami,” in Nature Nanotechology.

“Self-assembled structures are often too small and affordable lithographic patterns are too large,” said Albert Hung, lead author of the Nature Nanotechnology paper and a post doc working in Cha’s lab. “But rationally designed synthetic DNA nanostructures allow us to access length scales between 5 and 100 nanometers and bridge the two systems.

“People have created a huge variety of unique and functional nanostructures, but for some intended applications they are worthless unless you can place individual structures, billions or trillions of them at the same time, at precise locations,” Hung added. “We hope that our research brings us a step closer to solving this very difficult problem.”

Hung said the recently discovered method may be useful for fabricating nanoscale electronic or optical circuits and multiplex sensors. “A number of groups have worked on parts of this research problem before, but to our knowledge, we're the first to attempt to address so many parts together as a whole,” he said.

One of the main applications of this research that Cha and her group are interested in is for sensing. “There is no foreseeable route to be able to build a complex array of different nanoscale sensing elements currently,” said Cha, a former IBM research scientist who joined the UCSD Jacobs School of Engineering faculty in 2008. “Our work is one of the first clear examples of how you can merge top down lithography with bottom up self assembly to build such an array. That means that you have a substrate that is patterned by conventional lithography, and then you need to take that pattern and merge it with something that can direct the assembly of even smaller objects, such as those having dimensions between 2 and 20 nanometers. You need an intermediate template, which is the DNA origami, which has the ability to bind to something else much smaller and direct their assembly into the desired configuration. This means we can potentially build transistors from carbon nanotubes and also possibly use nanostructures to detect certain proteins in solutions. Scientists have been talking about patterning different sets of proteins on a substrate and now we have the ability to do that.”

Cha said the next step would be to actually develop a device based on this research method. “I’m very interested in the applications of this research and we’re working our way to get there,” she said.

For the last 6 years, Cha’s research has focused on using biology to engineer the assembly of nanoscale materials for applications in medicine, electronics and energy. One of the limitations of nanoscience is it doesn’t allow mass production of products, but Cha’s work is focused on trying figure out how to do that and do it cheaply. Much of her recent work has focused on using DNA to build 2D structures.

“Using DNA to assemble materials is an area that many people are excited about,” Cha said. “You can fold DNA into anything you want – for example, you can build a large scaffold and within that you could assemble very small objects such as nano particles, nano wires or proteins.

“Engineers need to understand the physical forces needed to build functional arrays from functional materials,” she added. “My job as a nanoengineer is to figure out what you need to do to put all the different parts together, whether it’s a drug delivery vehicle, photovoltaic applications, sensors or transistors. We need to think about ways to take all the nano materials and engineer them it into something people can use and hold.”

"Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami," Nature Nanotechnology. Albert M. Hung, Christine M. Micheel, Luisa D. Bozano, Lucas W. Osterbur, Greg M. Wallraff, and Jennifer N. Cha.

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>