Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles Improve Solar Collector Efficiency

06.04.2011
Using minute graphite particles 1000 times smaller than the width of a human hair, mechanical engineers at Arizona State University hope to boost the efficiency—and profitability—of solar power plants.

Photovoltaic (PV) solar panels are popping up more and more on rooftops, but they’re not necessarily the best solar power solution. “The big limitation of PV panels is that they can use only a fraction of the sunlight that hits them, and the rest just turns into heat, which actually hurts the performance of the panels,” explains Robert Taylor, a graduate student in mechanical engineering at Arizona State University.

An alternative that can make use of all of the sunlight, including light PVs can’t use, is the solar thermal collector. The purpose of these collectors—which take the form of dishes, panels, evacuated tubes, towers, and more—is to collect heat that can then be used to boil water to make steam, for example, which drives a turbine to create electricity.

To further increase the efficiency of solar collectors, Taylor and his colleagues have mixed nanoparticles—particles a billionth of a meter in size—into the heat-transfer oils normally used in solar thermal power plants. The researchers chose graphite nanoparticles, in part because they are black and therefore absorb light very well, making them efficient heat collectors. In laboratory tests with small dish collectors, Taylor and his colleagues found that nanoparticles increased heat-collection efficiency by up to 10 percent. “We estimate that this could mean up to $3.5 million dollars per year more revenue for a 100 megawatt solar power plant,” he says.

What’s more, Taylor adds, graphite nanoparticles “are cheap”—less than $1 per gram—but with 100 grams of nanoparticles providing the same heat-collecting surface area as an entire football field. “It might also be possible to filter out nanoparticles of soot, which have similar absorbing potential, from coal power plants for use in solar systems,” he says. “I think that idea is particularly attractive: using a pollutant to harvest clean, green solar energy.”

The article, “Applicability of nanofluids in high flux solar collectors” by Robert A. Taylor, Patrick E. Phelan, Todd P. Otanicar, Chad A. Walker, Monica Nguyen, Steven Trimble, and Ravi Prasher, appears in the Journal of Renewable and Sustainable Energy.

Reporters may receive a free PDF of this article by contacting Charles E. Blue at cblue@aip.org.

Details on the paper can be accessed here: http://jrse.aip.org/resource/1/jrsebh/v3/i2/p023104_s1

About the Journal of Renewable and Sustainable Energy

The Journal of Renewable and Sustainable Energy, published by the American Institute of Physics, is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. Content is published online daily, collected into bimonthly issues (6 times a year). As an electronic-only, web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields

About AIP

The American Institute of Physics is an organization of 10 physical sciences societies representing more than 135,000 scientists, engineers, and educators and is one of the largest publishers of scientific information in physics. AIP also delivers valuable resources and expertise in education and student services, science communication, government relations, career services for science and engineering professionals, statistical research, industrial outreach, and the history of physics and other sciences. Offering publishing solutions for scientific societies and organizations in science and engineering, AIP pursues innovation in electronic publishing of scholarly journals. AIP publishes 13 journals (journals.aip.org), 2 magazines—including its flagship publication, Physics Today—and the AIP Conference Proceedings series. Scitation, AIP’s online publishing platform, hosts 1.6 million articles from 190 scholarly journals, proceedings, and eBooks of learned society publishers. AIP also provides the international physical science community with UniPHY, the first literature-based social and professional networking site; it features pre-populated profiles of more than 300,000 scientists and enables collaboration among researchers worldwide.

Charles E. Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>