Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocrystal-coated fibers might reduce wasted energy

18.04.2012
Researchers are developing a technique that uses nanotechnology to harvest energy from hot pipes or engine components to potentially recover energy wasted in factories, power plants and cars.

"The ugly truth is that 58 percent of the energy generated in the United States is wasted as heat," said Yue Wu, a Purdue University assistant professor of chemical engineering. "If we could get just 10 percent back that would allow us to reduce energy consumption and power plant emissions considerably."

Researchers have coated glass fibers with a new "thermoelectric" material they developed. When thermoelectric materials are heated on one side electrons flow to the cooler side, generating an electrical current.

Coated fibers also could be used to create a solid-state cooling technology that does not require compressors and chemical refrigerants. The fibers might be woven into a fabric to make cooling garments.

The glass fibers are dipped in a solution containing nanocrystals of lead telluride and then exposed to heat in a process called annealing to fuse the crystals together.

Such fibers could be wrapped around industrial pipes in factories and power plants, as well as on car engines and automotive exhaust systems, to recapture much of the wasted energy. The "energy harvesting" technology might dramatically reduce how much heat is lost, Wu said.

Findings were detailed in a research paper appearing last month in the journal Nano Letters. The paper was written by Daxin Liang, a former Purdue exchange student from Jilin University in China; Purdue graduate students Scott Finefrock and Haoran Yang; and Wu.

Today's high-performance thermoelectric materials are brittle, and the devices are formed from large discs or blocks.

"This sort of manufacturing method requires using a lot of material," Wu said.

The new flexible devices would conform to the irregular shapes of engines and exhaust pipes while using a small fraction of the material required for conventional thermoelectric devices.

"This approach yields the same level of performance as conventional thermoelectric materials but it requires the use of much less material, which leads to lower cost and is practical for mass production," Wu said.

The new approach promises a method that can be scaled up to industrial processes, making mass production feasible.

"We've demonstrated a material composed mostly of glass with only a 300-nanometer-thick coating of lead telluride," Finefrock said. "So while today's thermoelectric devices require large amounts of the expensive element tellurium, our material contains only 5 percent tellurium. We envision mass production manufacturing for coating the fibers quickly in a reel-to-reel process."

In addition to generating electricity when exposed to heat, the materials also can be operated in a reverse manner: Applying an electrical current causes it to absorb heat, representing a possible solid-state air-conditioning method. Such fibers might one day be woven into cooling garments or used in other cooling technologies.

The researchers have shown that the material has a promising thermoelectric efficiency, which is gauged using a formula to determine a measurement unit called ZT. A key part of the formula is the "Seebeck coefficient," named for 19th century German physicist Thomas Seebeck, who discovered the thermoelectric effect.

ZT is defined by the Seebeck coefficient, along with the electrical and thermal conductivity of the material and other factors. Having a low thermal conductivity, a high Seebeck coefficient and electrical conductivity results in a high ZT number.

"It's hard to optimize all of these three parameters simultaneously because if you increase electrical conductivity, and thermal conductivity goes up, the Seebeck coefficient drops," Wu said.

Most thermoelectric materials in commercial use have a ZT of 1 or below. However, nanostructured materials might be used to reduce thermal conductivity and increase the ZT number.

The Purdue researchers have used the ZT number to calculate the maximum efficiency that is theoretically possible with a material.

"We analyze the material abundance, the cost, toxicity and performance, and we established a single parameter called the efficiency ratio," Wu said.

Although high-performance thermoelectric materials have been developed, the materials are not practical for widespread industrial applications.

"Today's higher performance ones have a complicated composition, making them expensive and hard to manufacture," Wu said. "Also, they contain toxic materials, like antimony, which restricts thermoelectric research."

The nanocrystals are a critical ingredient, in part because the interfaces between the tiny crystals serve to suppress the vibration of the crystal lattice structure, reducing thermal conductivity. The materials could be exhibiting "quantum confinement," in which the structures are so tiny they behave nearly like individual atoms.

"This means that, as electrons carry heat through the structures, the average voltage of those heat-carrying electrons is higher than it would be in larger structures," Finefrock said. "Since you have higher-voltage electrons, you can generate more power."

This confinement can raise the ZT number.

A U.S. patent application has been filed for the fiber-coating concept.

Future work could focus on higher temperature annealing to improve efficiency, and the researchers also are exploring a different method to eliminate annealing altogether, which might make it possible to coat polymer fibers instead of glass.

"Polymers could be weaved into a wearable device that could be a cooling garment," Wu said.

The researchers also may work toward coating the glass fibers with a polymer to improve the resilience of the thermoelectric material, which tends to develop small cracks when the fibers are bent at sharp angles.

Researchers demonstrated the concept with an experiment using a system containing tubes of differing diameters nested inside a larger tube. Warm water flows through a central tube and cooler water flows through an outer tube, with a layer of thermoelectric material between the two.

The Purdue researchers also are exploring other materials instead of lead and tellurium, which are toxic, and preliminary findings suggest these new materials are capable of a high ZT value.

"Of course, the fact that our process uses such a small quantity of material – a layer only 300 nanometers thick – minimizes the toxicity issue," Wu said. "However, we also are concentrating on materials that are non-toxic and abundant."

The work has been funded by the National Science Foundation and U.S. Department of Energy.

Related website: Yue Wu: https://engineering.purdue.edu/ChE/People/ptProfile?id=65079

A publication-quality photo is available at http://news.uns.purdue.edu/images/2012/wu-energy.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2012/120417WuEngergy.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Generating needs-led electricity with biogas plants
17.10.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Ultra-light gloves let users 'touch' virtual objects
16.10.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>