Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling Biofuel Fitness for the Sea

22.06.2012
With the help of a $2 million grant from the U.S. Office of Naval Research, mechanical engineers at the University of Wisconsin-Madison will develop a tool to characterize the performance of a new class of alternative fuels that could be used in maritime vehicles such as submarines and aircraft carriers.

With fossil fuels a limited resource largely controlled by other nations, the U.S. Navy—the largest user of diesel fuel in the country—understandably is interested in alternative fuels that can be produced in the United States.

However, the Navy has some unique needs for powering its fleet of ships, submarines, aircraft carriers, and other marine vessels: The fuels can’t mix with water, nor can they be readily flammable. This excludes most existing biofuels.

A new type of diesel biofuel, called hydro-treated vegetable oil (HVO), could be the answer for maritime vessels. It’s just a matter of determining which, of many possible blends, performs best in an engine. Every fuel has a unique combination of traits, including how hot it burns, how its different components interact, and how quickly the combustion reaction starts.

And as an alternative to expensive, time-consuming tests of each of these traits for every candidate fuel, Rolf Reitz, Wisconsin Distinguished Professor of mechanical engineering at UW-Madison, will lead a project to create a tool for modeling fuel properties.

In fact, Reitz and his colleagues in the UW-Madison Engine Research Center will use the distribution of components in the fuel themselves to predict a fuel’s performance in an engine. For example, all fuels contain different proportions of various types of chemicals, such as aromatic compounds. While each is slightly different, aromatics as a group behave similarly in combustion experiments, and Reitz’s team will characterize how the proportion of aromatic compounds in a fuel affects its behavior in the Engine Research Center suite of test engines.

With rigorous experimentation on a variety of fuels, Reitz says the team can create a world-class model that predicts a fuel’s behavior based solely on its chemical breakdown, allowing the Navy—and eventually, anyone else—to more easily select the best HVO blend for its needs.

"This tool can help them assess whether that fuel makes sense without having to do laborious extensive testing,” Reitz says. “They’ll still have to do some testing, but this lets them eliminate certain classes right off the bat.”

Christie Taylor, ctaylor@engr.wisc.edu, (608) 263-5988

Christie Taylor | Newswise Science News
Further information:
http://www.wisc.edu

Further reports about: Biofuel Engine Fitness HVO Modeling alternative fuel sea snails

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>