Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile measuring instruments: Caught in flight

07.07.2020

Humans are exposed to numerous harmful environmental influences, and it is an international concern to quantify these emissions as accurately as possible in order to be able to take measures to contain them. Empa is also part of these efforts and has, among other things, developed a drone equipped with state-of-the-art measuring instruments which can detect methane leaks. It is also assisting the European Space Agency (ESA) in the development of new satellites capable of detecting CO2 sources from space.

Methane (CH4) is one of the main causes of global warming, but the contribution of the individual methane sources is still not exactly known. Such quantification would be urgently needed, however, if measures are to be taken to achieve the United Nations (UN) climate targets.


The drone with the mounted quantum cascade laser can measure methane emissions from oil and gas fields on the move.

Image: Empa

Within the Horizon2020 project MEMO2 (“Methane goes Mobile, Measurements and Modelling”), 20 research groups from seven countries are focus-ing on identifying methane sources and quantifying their emissions using mobile analytical equipment – including Empa.

The MEMO2 researchers have placed a special focus on Romania. With its numerous oil and gas fields, the country is one of the main sources of European methane emissions. Methane escapes to the surface via the drilling shafts of these fields and partly escapes into the atmosphere.

Until now, very accurate methane measurements could only be carried out with stationary measuring instruments. Although these are sometimes installed in vehicles, they can then only be used precisely along the road – a costly and unsatisfactory undertaking.

However, Empa researchers have now succeeded in developing a precise and lightweight measuring instrument which can be mounted on a drone to measure CH4 concentrations and thus deter mine emissions.

“The new spectrometer is a breakthrough in the analysis of trace gases in terms of measurement accuracy, size and weight”, explains Lukas Emmenegger, head of Empa’s Air Pollution/Environmental Technology lab.

To quantify the methane, Emmenegger and his team use a quantum cascade laser (QCL). The spectrometer mounted on the drone can be used to determine the three-dimensional distribution of meth-ane in the vicinity of a source. Combining this data with wind measurements enables the researchers to calculate the emission of a source.

The drone also has the advantage that it allows measurements to be made in places that are difficult to access from the ground. For example, the drone can be used to fly over larger wells or parts of oil fields in order to determine where methane reaches the surface and in what quantities.

Such detailed measurements will make it possible to take and verify concrete measures to further reduce methane emissions. Industry is also interested in this, confirms Emmenegger. “Our new measurement technology has already led to numerous enquiries from industry and research. This has resulted in many exciting projects in the field of natural and man-made methane source.”

Ten in one go

But methane is not the only pollutant on the list. It also includes carbon dioxide (CO2), ozone (O3) and ammonia (NH3). However, instruments that can measure these gases are complex, expensive and require a lot of energy, because each gas must be measured with a separate method – at least until now. The two former Empa researchers Morten Hundt and Oleg Aseev have developed a QCL spectrometer that can detect ten environmental gases simultaneously.

They recently founded the Empa spin-off “MIRO Analytical Technologies” and have already celebrated numerous successes. Among other things, they received 1.25 million Euros in funding at the beginning of 2020 as part of the Accelerator Program of the “European Innovation Council”.

Since January 2019 they have also been part of the Business Incubator of the European Space Agency ESA, as their high-tech sensor can serve as an important reference – on the ground or airborne – for the observation of environmental gases by satellites.

Observations from Space

ESA is also relying on Empa’s expertise in the preparations for the CO2M satellite mission (“Copernicus Anthropogenic Carbon Dioxide Monitoring”). The first CO2M satellites are due to be sent into orbit from 2025 onwards. They will use spectroscopic measurements to produce global maps of CO2 concentrations in the atmosphere.

This will make it possible to determine where and how much CO2 is emitted by industrial plants, cities and countries. “We were able to give ESA various recommendations for the analytical equipment of the satellites”, says Empa researcher Gerrit Kuhlmann.

For example, the satellite must be capable of separating the manmade CO2 emissions from the signals of the biosphere – i.e. the naturally occurring. An additional NO2 instrument should therefore be able to separate anthropogenic and biospheric CO2 signals. In order to test this idea, Kuhlmann and his team simulated the distribution of CO2 and NO2 concentrations for the year 2015.

The elaborate simulations were carried out on the fastest high-performance computer in Europe, the “Piz Daint” at the Swiss computing centre CSCS in Lugano. The Empa researchers were able to show that a combination of CO2 and NO2 measurements provides better and more reliable results than if only one CO2 measuring instrument were installed on the satellite. The recommendation for the installation of an additional NO2 measuring instrument has already been taken up by ESA in the planning of the new satellites.

Wissenschaftliche Ansprechpartner:

Dr. Lukas Emmenegger
Luftfremdstoffe / Umwelttechnik
Phone +41 58 765 46 99
Lukas.emmenegger@empa.ch

Weitere Informationen:

https://www.empa.ch/web/s604/methanedrone

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt
Further information:
https://www.empa.ch/web/s604/methanedrone-eq68

More articles from Power and Electrical Engineering:

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

nachricht Silicon Carbide Transistors Improve Efficiency in Home Storage Systems
24.07.2020 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>