Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micromachining: Inclinations sounded out

15.05.2013
A novel type of tilt sensor may extend the capabilities of ultrasonic devices already used in a range of applications

Echolocation is a powerful technique that uses sound or ultrasound waves to locate objects and surfaces. Ships and submarines, for example, use it to avoid collisions, and dolphins and microbats use it to locate prey.


Dolphins use echolocation to locate prey and navigate. Researchers have harnessed the same principle to determine the inclination of millimeter-sized ultrasonic sensors.

© Dorling Kindersley RF/Thinkstock

Hongbin Yu and co-workers from the A*STAR Institute of Microelectronics, Singapore, have now used echolocation to measure the inclination of millimeter-sized ultrasonic sensors. In this new setting, their technique should extend the capabilities of devices that already use ultrasonic components, whether for locating defects in materials, visualizing anatomical structures or determining range.

Yu and his co-workers built on the success that so-called ‘capacitive micromachined ultrasonic transducers’ (CMUTs) have achieved over the past decade in generating and detecting ultrasound signals. These devices are fabricated using silicon micromachining technology, so the components are very compact and can be conveniently integrated with standard electronics components, which are also based on silicon.

“Our main goal was to explore a new application of the CMUT device,” says Yu. Consequently, the researchers harnessed these ultrasonic components for measuring tilt angles. They used three micromachined CMUTs — two senders and a common receiver — each measuring less than a tenth of a millimeter across. To test this array, they immersed it in a bath filled with oil. As they tilted the device, the oil surface stayed level — in the same manner that the water surface in a tilted glass would remain horizontal. However, the distances between the surface and the sensors at the bottom changed such that one sensor became closer to the surface than the other.

By measuring how long it took the ultrasound waves to travel from each of the senders to the receiver, via the oil surface where the waves were reflected, Yu and his co-workers could accurately determine the distances between the sensors and the surface. They could then calculate the tilt angle that the CMUT array had relative to the oil surface.

As many devices already contain ultrasonic components, the new sensor should be useful in a number of applications, according to Yu. “As one example, in an automotive robotic arm equipped with ultrasound transducers for fault detection, a tilt-sensing function should help improve the arm-control accuracy without greatly increasing the complexity of the device,” he explains.

Other areas where tilt-angle measurements are important include level determination for instrumentation and motion-state monitoring. With the team’s innovation, such functionality may now be added to ultrasonic medical-imaging and non-destructive materials-testing devices.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Yu, H., Guo, B., Haridas, K., Lin, T.-H., Cheong, J. H. et al. Capacitive micromachined ultrasonic transducer based tilt sensing. Applied Physics Letters 101, 153502 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6665
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>