Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet the most nimble-fingered robot ever built

02.06.2017

Grabbing the awkwardly shaped items that people pick up in their day-to-day lives is a slippery task for robots. Irregularly shaped items such as shoes, spray bottles, open boxes, even rubber duckies are easy for people to grab and pick up, but robots struggle with knowing where to apply a grip. In a significant step toward overcoming this problem, roboticists at UC Berkeley have a built a robot that can pick up and move unfamiliar, real-world objects with a 99 percent success rate.

Berkeley professor Ken Goldberg, postdoctoral researcher Jeff Mahler and the Laboratory for Automation Science and Engineering (AUTOLAB) created the robot, called DexNet 2.0.


To reduce data collection time for deep learning of robust robotic grasp plans, we explore training from a synthetic dataset of 6.7 million point clouds, grasps, and robust analytic grasp metrics generated from thousands of 3D models from Dex-Net 1.0 in randomized poses on a table. We use the resulting dataset, Dex-Net 2.0, to train a Grasp Quality Convolutional Neural Network (GQ-CNN) model that rapidly classifies grasps as robust from depth images and the position, angle, and height of the gripper above a table. Experiments with over 1,000 trials on an ABB YuMi comparing grasp planning methods on singulated objects suggest that a GQ-CNN trained with only synthetic data from Dex-Net 2.0 can be used to plan grasps in 0.8s with a success rate of 93% on eight known objects with adversarial geometry and is 3x faster than registering point clouds to a precomputed dataset of objects and indexing grasps. The GQ-CNN is also the highest performing method on a dataset of ten novel household objects, achieving 99% precision on test objects. (Video)

Credit: Adriel Olmos, CITRIS Media

DexNet 2.0's high grasping success rate means that this technology could soon be applied in industry, with the potential to revolutionize manufacturing and the supply chain.

DexNet 2.0 gained its highly accurate dexterity through a process called deep learning. The researchers built a vast database of three-dimensional shapes -- 6.7 million data points in total -- that a neural network uses to learn grasps that will pick up and move objects with irregular shapes.

The neural network was then connected to a 3D sensor and a robotic arm. When an object is placed in front of DexNet 2.0, it quickly studies the shape and selects a grasp that will successfully pick up and move the object 99 percent of the time.

DexNet 2.0 is also three times faster than its previous version.

DexNet 2.0 was featured as the cover story of the latest issues of MIT Technology Review, which called DexNet 2.0 "the most nimble-fingered robot yet."

The complete paper will be published in July.

Brett Israel | EurekAlert!

Further reports about: deep learning neural network robotic arm supply chain

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>