New mechanism for superconductivity discovered in iron-based superconductors

In classical theory, superconductivity occurs when two electrons are bound together to form a pair, known as a Cooper pair, by lattice vibrations. This pairing mechanism, however, has never been confirmed for high-temperature superconductors, whose transition temperatures well above the theoretical limit of about 40 K pose an enigma for condensed matter physics.

The iron-based superconductors investigated by the research team, first discovered in 2008 by Japanese researchers, offer the greatest chance of solving this enigma. With a maximum transition temperature of 55K, these superconductors are governed by an electron pairing mechanism that is different from earlier superconductors mediated by lattice vibrations, one based on two types of electrons with different momenta.

To analyze this complex pairing mechanism, the researchers applied scanning tunnelling microscopy to electron pairing in Fe(Se, Te), the iron-based superconductor with the simplest crystal structure. Imaging electronic standing waves produced by scattering interference under a powerful 10-Tesla magnetic field, they found that Cooper pairs adopted a characteristic “s±-wave” structure that is unique to a material with two types of electrons.

The discovery of s±-wave structure breaks new ground by supporting a mechanism for electron pairing based not on lattice vibrations, as in other forms of superconductivity, but on magnetism. In providing a powerful constraint on theoretical models, the finding thus marks a major advance toward unraveling the mystery of high-temperature superconductivity.

For more information, please contact:

Dr. Tetsuo Hanaguri
Magnetic Materials Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-5428 / Fax: +81-(0)48-462-4649
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

ABOUT RIKEN
RIKEN, Japan’s flagship research organization, conducts basic and applied experimental research in a wide range of science and technology fields including physics, chemistry, medical science, biology and engineering.

Media Contact

Magdeline Pokar Research asia research news

More Information:

http://www.riken.jp/

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors