Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Un-masking a faster solution for chip-making

02.12.2008
European researchers have developed a promising solution to ‘mask-less’ semiconductor lithography and generated intense interest among major industry players.

Mask-less lithography (ML2) promises to rapidly reduce the costs and production times associated with low-volume device manufacture and prototyping. A mask is a type of template that allows semiconductor manufacturers to print the circuit design onto a silicon wafer for microchip production.

But masks are very expensive and several are needed for one chip.

“The cost of masks is also rising as chip features become smaller and more sophisticated,” explains Hans Loeschner, administrator of the RIMANA project.

The project was set up to demonstrate the feasibility of a new technique for mask-less lithography, called PML2, or Projection Mask-Less Lithography. It uses a variety of technologies in combination to burn a chip without a mask.

RIMANA’s work has been wildly successful. The technology is now part of another EU-funded project, MAGIC, that will refine PML2 and examine alternatives, even though RIMANA will only finish its work in autumn 2008.

Better yet, the industry is already intensely interested in the work currently in completion. RIMANA’s lead partner, IMS Nanofabrication, is in advanced talks with a leading industry player to develop the current prototype into a commercial model, possibly as early as 2011.

Further innovations

Leading industry figures like Dr Burn Lin, senior director of the lithography division of the Taiwan Semiconductor Manufacturing Company (TSMC), the leading semiconductor foundry in the world, believe that platforms like the RIMANA PML2 technology could have a very long life.

Further development on the RIMANA concept, Lin believes, could push the technology to respond to even greater challenges in the semiconductor lithography space.

Semiconductor lithography is essentially printing for microchips. The chips are printed with the tiny channels, gates and transistors that make up modern integrated circuits (ICs).

“Just like the printing industry, you have different printing machines for different purposes. A newspaper would have an enormous printer installation, that would be like Intel or AMD producing microprocessor chips or Micron and Samsung printing memory chips, but other solutions are needed for small print-runs and one-off projects,” explains Dr Loeschner.

As semiconductors for all applications become more sophisticated, current solutions to the problem are no longer adequate to meet demand. “The industry needs a cost effective and fast system, and now. There is already demand for a system that can produce chips for low-volume applications, for device development and for rapid prototyping,” Dr Loeschner reveals.

New twist on old idea

The EU-funded RIMANA project looked at a combination of established technologies for a radical potential solution. “The idea behind PML2 has been around for a long time, a similar system was proposed already in the 1980s, but there were problems that were impossible to solve at the time,” Dr Loeschner states.

RIMANA’s solution does not use a single Electron Beam Direct Write unit, which is normally used to make masks. Instead, the PML2 technology uses an electron beam that is directed to an aperture plate system that splits the beam into many thousands of smaller beams.

Next, a blanking plate may deflect individual beams. Only the un-deflected beams are projected to the silicon wafer surface to create a pattern, and that pattern is needed for the circuit fabrication.

But that simple explanation overlooks a large number of major innovations. For example, the company found a way to reduce by 200 the small beams produced by the aperture. “A 25mm diameter electron beam could be split into many hundred thousand micrometer- sized beams, and we then reduce those beams down to less than 20 nanometres,” explains Dr Loeschner.

Testing technology

RIMANA tested its technology on 32nm and 22nm half-pitch (hp) circuit patterns. Half-pitch refers to a measure of lines and spaces to separate it from other elements within the circuit. A smallest resolution of just 16nm hp was achieved, surpassing the 22nm hp target of the RIMANA project.

Now, lead partner IMS Nanofabrication, together with the RIMANA partners, is putting the finishing touches to a programmable blanking plate. This uses an integrated CMOS (complementary metal oxide semiconductor) electronics to control beam deflection and is a major advance for the technology because it means that the patterns created by the PML2 system can be changed quickly.

All in all, it is a very complete, functioning proof-of-concept system. Within the MAGIC project, in 2008 a pre-commercialisation model is being realised followed, in 2009, by a PML2 Alpha Tool. Work remains to be done to make the system more robust, but it could be available commercially very soon.

The RIMANA project received funding from the ICT strand of the Sixth Framework Programme for research.

This is the first of a two-part special feature on RIMANA

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90225

More articles from Power and Electrical Engineering:

nachricht Cooling with the sun
25.06.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht New combustion process - Record efficiency for a gas engine
21.06.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>