Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating single atoms with an electron beam

10.07.2018

All matter is composed of atoms, which are too small to see without powerful modern instruments including electron microscopes. The same electrons that form images of atomic structures can also be used to move atoms in materials. This technique of single-atom manipulation, pioneered by University of Vienna researchers, is now able to achieve nearly perfect control over the movement of individual silicon impurity atoms within the lattice of graphene, the two-dimensional sheet of carbon. The latest results are reported in the scientific journal "Nano Letters".

As an epoch-making achievement in nanotechnology, the scanning tunneling microscope has since the late 1980s been able to move atoms over surfaces, and has until very recently been the only technology capable of moving individual atoms in such a controlled manner.


An electron beam focused on a carbon atom next to a silicon impurity atom can controllably make it jump to where the beam was placed. Step by step this allows the silicon to be moved with atomic precision around a hexagonal path.

Credit: © CC-BY, Toma Susi / University of Vienna

Now, the scanning transmission electron microscope (STEM) is able to reliably focus an electron beam with sub-atomic precision, allowing scientists to directly see each atom in two-dimensional materials like graphene, and also to target single atoms with the beam. Each electron has a tiny chance of scattering back from a nucleus, giving it a kick in the opposite direction.

Building on work published over the past few years, a research team at the University of Vienna led by Toma Susi has now used the advanced electron microscope Nion UltraSTEM100 to move single silicon atoms in graphene with truly atomic precision.

Even with manual operation, the achieved movement rate is already comparable to the state-of-the-art in any atomically precise technique. "The control we are able to achieve by essentially directing the electron beam by hand is already remarkable, but we have further taken the first steps towards automation by detecting the jumps in real time", says Susi.

The new results also improve theoretical models of the process by including simulations by collaborators in Belgium and Norway.

In total, the researchers recorded nearly 300 controlled jumps. Additional to extended paths or moving around a single hexagon made of carbon atoms in graphene, a silicon impurity could be moved back and forth between two neighboring lattice sites separated by one tenth-billionth of a meter, like flipping an atomic-sized switch.

In principle, this could be used to store one bit of information at record-high density. Dr. Susi concludes, "Your computer or cellphone will not have atomic memories anytime soon, but graphene impurity atoms do seem to have potential as bits near the limits of what is physically possible."

###

Main funding for this work came from the European Research Council (ERC) and the Austrian Science Fund (FWF).

Publication:

Electron-Beam Manipulation of Silicon Dopants in Graphene: Mukesh Tripathi, Andreas Mittelberger, Nicholas Pike, Clemens Mangler, Jannik C. Meyer, Matthieu Verstraete, Jani Kotakoski, and Toma Susi. Nano Letters Article ASAP, DOI: 10.1021/acs.nanolett.8b02406.

Media Contact

Toma Susi
toma.susi@univie.ac.at
43-142-777-2855

 @univienna

http://www.univie.ac.at/en/ 

Toma Susi | EurekAlert!
Further information:
http://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/manipulating-single-atoms-with-an-electron-beam/
http://dx.doi.org/10.1021/acs.nanolett.8b02406

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>