Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019

Machine learning (ML), a form of artificial intelligence that recognizes faces, understands language and navigates self-driving cars, can help bring to Earth the clean fusion energy that lights the sun and stars. Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are using ML to create a model for rapid control of plasma -- the state of matter composed of free electrons and atomic nuclei, or ions -- that fuels fusion reactions.

The sun and most stars are giant balls of plasma that undergo constant fusion reactions. Here on Earth, scientists must heat and control the plasma to cause the particles to fuse and release their energy. PPPL research shows that ML can facilitate such control.


Fast-camera photo of a plasma produced by the first NSTX-U operations campaign.

Credit: NSTX-U experiment

Neural Networks

Researchers led by PPPL physicist Dan Boyer have trained neural networks -- the core of ML software -- on data produced in the first operational campaign of the National Spherical Torus Experiment-Upgrade (NSTX-U), the flagship fusion facility, or tokamak, at PPPL.

The trained model accurately reproduces predictions of the behavior of the energetic particles produced by powerful neutral beam injection (NBI) that is used to fuel NSTX-U plasmas and heat them to million-degree, fusion-relevant temperatures.

These predictions are normally generated by a complex computer code called NUBEAM, which incorporates information about the impact of the beam on the plasma. Such complex calculations must be made hundreds of times per second to analyze the behavior of the plasma during an experiment.

But each calculation can take several minutes to run, making the results available to physicists only after an experiment that typically lasts a few seconds is completed.

The new ML software reduces the time needed to accurately predict the behavior of energetic particles to under 150 microseconds -- enabling the calculations to be done online during the experiment.

Initial application of the model demonstrated a technique for estimating characteristics of the plasma behavior not directly measured. This technique combines ML predictions with the limited measurements of plasma conditions available in real-time.

The combined results will help the real-time plasma control system make more informed decisions about how to adjust beam injection to optimize performance and maintain stability of the plasma -- a critical quality for fusion reactions.

Rapid evaluations

The rapid evaluations will also help operators make better-informed adjustments between experiments that are executed every 15-20 minutes during operations. "Accelerated modeling capabilities could show operators how to adjust NBI settings to improve the next experiment," said Boyer, lead author of a paper in Nuclear Fusion that reports the new model.

Boyer, working with PPPL physicist Stan Kaye, generated a database of NUBEAM calculations for a range of plasma conditions similar to those achieved in experiments during the initial NSTX-U run.

Researchers used the database to train a neural network to predict effects of neutral beams on the plasma, such as heating and profiles of the current.

Software engineer Keith Erickson then implemented software for evaluating the model on computers used to actively control the experiment to test the calculation time.

New work will include development of neural network models tailored to the planned conditions of future NSTX-U campaigns and other fusion facilities. In addition, researchers plan to expand the present modeling approach to enable accelerated predictions of other fusion plasma phenomena. Support for this work comes from the DOE Office of Science.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

For more information, please visit  science.energy.gov.

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!
Further information:
http://dx.doi.org/10.1088/1741-4326/ab0762

Further reports about: PPPL Plasma energetic particles fusion energy fusion reactions neural network

More articles from Power and Electrical Engineering:

nachricht No more trial-and-error when choosing an electrolyte for metal-air batteries
15.07.2019 | Washington University in St. Louis

nachricht Solar power with a free side of drinking water
11.07.2019 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>