London Array: Siemens to provide grid access for world’s largest offshore wind farm

After Siemens Energy was already appointed to supply the turbines for the wind farm, the company also received the order to connect London Array to the power supply network. Purchasers are Dong Energy, E.ON and Masdar, the wind farm’s owners. The order volume is EUR128 million. The wind farm is scheduled to be completed by 2012 and will be hooked up to London’s power supply network via the Siemens grid connection.

The wind farm is being erected in the Thames estuary approximately twenty kilometers off the Kent and Essex coasts. An option is also provided for uprating London Array to as much as 1000 MW. The wind farm will thus become the first in the 1-gigawatt class. That will be sufficient to supply 750,000 British households with eco-friendly electricity, which is equivalent to approximately a quarter of the population of Greater London. “Offshore wind farms of this size place particular demands in terms of grid access. We not only have the requisite technology and know-how but also a wealth of experience in connecting offshore wind farms to the grid,” said Udo Niehage, CEO of the Power Transmission Division of Siemens Energy.

Siemens will supply the electrical equipment for two offshore substation platforms, which will be installed right at the wind farm. The substations bundle the power generated by the 175 Siemens SWT-3.6 wind turbines, each rated at 3,6 MW, before it is transported via high-voltage subsea cable to the coast. On each of the platforms there are two 180-MVA transformers and medium-voltage switchgear. The requisite protection and instrumentation and control equipment is also installed on the platforms. Distribution over two platforms has the advantage that the cable routes within the wind farm are short, and power transmission losses are kept as low as possible to enhance the wind farm’s energy efficiency.

The transformers on the substation platforms step up the 33 kilovolts (kV) generated by the wind turbines to a transmission voltage of 150 kV. High-voltage subsea cables transport the electricity to the grid access point, which is located in Cleve Hill. In addition to a substation with four 180-MVA power transformers (400/150 kV) Siemens will also install four 50-MVAr reactive-power compensators at this access point to fulfill the British grid’s requirements (Grid Code) on the quality of the electrical energy fed into the grid.

For that purpose Siemens will deploy its new SVC Plus system. It operates with innovative voltage-sourced converter (VSC) technology and is continuously controllable with the aid of insulated-gate bipolar transistors (IGBTs). The central feature of SVC Plus, a further refined statcom (static synchronous compensator), is its modular multilevel converter technology. By contrast with other self-commutated converter topologies the voltage waveform generated is practically sinusoidal because of the multilevel technology. This means that the low-frequency harmonic filters required in solutions used to date are no longer needed and significantly less space is required for the overall system.

Siemens will also prepare the requisite design studies for grid access for all of the wind farm’s electrical components and prepare the grid studies to demonstrate fulfillment of grid access requirements.

The provision of energy-efficient grid access for offshore wind farms is part of Siemens’ Environmental Portfolio. In fiscal 2009, revenue from the Portfolio totaled about €23 billion, making Siemens the world’s largest supplier of eco-friendly technologies. In the same period, our products and solutions enabled customers to reduce their CO2 emissions by 210 million tons.”

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2009 (ended September 30), the Energy Sector had revenues of approximately EUR25.8 billion and received new orders totaling approximately EUR30 billion and posted a profit of EUR3.3 billion. On September 30, 2009, the Energy Sector had a work force of more than 85,100.

Media Contact

Dietrich Biester Siemens Energy

More Information:

http://www.siemens.com/energy

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors