Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lignin 'lite' switchgrass boosts biofuel yield by more than one-third

15.02.2011
Bioethanol from new lines of native perennial prairie grass could become less costly because of plant engineering by The Samuel Roberts Noble Foundation and fermentation research at Oak Ridge National Laboratory.

In a paper published in the Proceedings of the National Academy of Sciences, researchers describe their transgenic version of switchgrass as one that produces about one-third more ethanol by fermentation than conventional switchgrass. This improved plant feedstock will be able to generate more biofuel per acre, benefiting not only the transportation sector but also the growers and farming community.

"Recalcitrance, or a plant's natural defenses against insects, fungus and the weather, is widely acknowledged as being the single biggest barrier to the production of biofuel and biochemicals from switchgrass and other lignocellulosic materials," said Jonathan Mielenz, a co-author and member of the Department of Energy lab's BioEnergy Science Center.

For years researchers have sought better ways to break down the plant's defense system, and while substantial progress has been reported, recalcitrance remains a significant challenge.

Despite this obstacle, switchgrass holds great promise as a bioenergy feedstock because it is a native perennial plant, grows with high yields and requires little nitrogen and water. These characteristics made it an attractive target for transgenic improvements.

To achieve their goal, a team led by Zeng Yu Wang of The Samuel Roberts Noble Foundation in Ardmore, Okla., chose to "downregulate" - a process that involves decreasing a cellular component - the caffeic acid 3-O-methyltransferase, or COMT, gene - in the Alamo variety of switchgrass. This change decreased the plant's structural "glue," lignin, by about one-eighth. The scientists chose this gene based on encouraging results of lignin modification from previous Noble research conducted in alfalfa and other plant species.

What the team from the Noble Foundation ended up with, as discovered by a team led by Mielenz, is a switchgrass that is more easily converted to biofuels under milder conditions and with much lower costly additions during fermentation.

"The presence of lignin in plant cell walls interferes with the fermentation to produce biofuels," said Wang, who noted that enzymes are the single largest processing cost component for bioconversion of biomass after the biomass itself. "The transgenic lines require lower temperature preprocessing and only one-quarter to one-third the level of enzymes for equivalent ethanol fermentation compared to the unmodified switchgrass. This significantly lowers the cost of biofuels and biochemicals from this switchgrass."

The paper, titled "Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass," will be published online this week. Other authors are Chunxiang Fu, Xirong Xiao, Yaxin Ge, Fang Chen, Joseph Bouton, and Richard Dixon of The Samuel Roberts Noble Foundation, Choo Hamilton and Miguel Rodriguez of ORNL, and Marc Foston and Art Ragauskas of Georgia Institute of Technology.

Supporting the research were the Department of Agriculture and the DOE Office of Science through ORNL's BioEnergy Science Center. UT-Battelle manages ORNL for DOE's Office of Science.

The BioEnergy Science Center is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The centers are led, respectively, by ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

The Samuel Roberts Noble Foundation is a nonprofit organization conducting agricultural, forage improvement and plant biology research; assisting farmers and ranchers through educational and consultative agricultural programs; and providing grants to nonprofit charitable, educational and health organizations.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20110214-00

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>