Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers etch a 'perfect' solar energy absorber

05.02.2020

The University of Rochester research lab that recently used lasers to create unsinkable metallic structures has now demonstrated how the same technology could be used to create highly efficient solar power generators.

In a paper in Light: Science & Applications, the lab of Chunlei Guo, professor of optics also affiliated with Physics and the Material Sciences Program, describes using powerful femto-second laser pulses to etch metal surfaces with nanoscale structures that selectively absorb light only at the solar wavelengths, but not elsewhere.


Using femto-second lasers to etch metallic structures, University of Rochester Institute of Optics professor Chunlei Guo and his team have developed a technique that can be used to collect sunlight to heat etched metal surfaces, which can then power an electrical generator for solar power.

Credit: J. Adam Fenster/University of Rochester

A regular metal surface is shiny and highly reflective. Years ago, the Guo lab developed a black metal technology that turned shiny metals pitch black. "But to make a perfect solar absorber," Guo says, "We need more than a black metal and the result is this selective absorber."

This surface not only enhances the energy absorption from sunlight, but also reduces heat dissipation at other wavelengths, in effect, "making a perfect metallic solar absorber for the first time," Guo says. "We also demonstrate solar energy harnessing with a thermal electric generator device."

"This will be useful for any thermal solar energy absorber or harvesting device," particularly in places with abundant sunlight, he adds.

The work was funded by the Bill and Melinda Gates Foundation, the Army Research Office, and the National Science Foundation.

The researchers experimented with aluminum, copper, steel, and tungsten, and found that tungsten, commonly used as a thermal solar absorber, had the highest solar absorption efficiency when treated with the new nanoscale structures. This improved the efficiency of thermal electrical generation by 130 percent compared to untreated tungsten.

Co-authors include Sohail Jalil, Bo Lai, Mohamed Elkabbash, Jihua Zhang, Erik M. Garcell, and Subhash Singh of the Guo lab.

The lab has also used the femto-second laser etching technology to create superhydrophobic (water repellent) and superhydrophilic (water-attracting) metals. In November 2019, for example, Guo's lab reported creating metallic structures that do not sink no matter how often they are forced into water or how much it is damaged or punctured.

This new paper, however, expands upon the lab's initial work with femto-second laser etched black metal.

Prior to creating the water attracting and repellent metals, Guo and his assistant, Anatoliy Vorobyev, demonstrated the use of femto-second laser pulses to turn almost any metal pitch black.

The surface structures created on the metal were incredibly effective at capturing incoming radiation, such as light. But they captured light over a broad range of wavelengths.

Subsequently, his team used a similar process to change the color of a range of metals to various colors, such as blue, golden, and gray, in addition to the black already achieved.

The applications could include making color filters and optical spectral devices, a car factory using a single laser to produce cars of different colors; etching a full-color photograph of a family into the refrigerator door; or proposing with a gold engagement ring that matches the color of your fiancee's blue eyes.

The lab also used the initial black and colored metal technique to create a unique array of nano- and micro-scale structures on the surface of a regular tungsten filament, enabling a light bulb to glow more brightly at the same energy usage.

"We fired the laser beam right through the glass of the bulb and altered a patch on the filament. When we lit the bulb, we could actually see this one patch was clearly brighter than the rest of the filament," Guo said.

Media Contact

Bob Marcotte
bmarcotte@ur.rochester.edu
585-273-5239

 @UofR

http://www.rochester.edu 

Bob Marcotte | EurekAlert!
Further information:
https://www.rochester.edu/newscenter/lasers-etch-a-perfect-solar-energy-absorber-414902/
http://dx.doi.org/10.1038/s41377-020-0242-y

More articles from Power and Electrical Engineering:

nachricht Next generation of greenhouses may be fully solar powered
10.02.2020 | North Carolina State University

nachricht How iron carbenes store energy from sunlight -- and why they aren't better at it
07.02.2020 | DOE/SLAC National Accelerator Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>