Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Goes Green: Efficiently Recycling Valuable Materials from Electronic Devices

04.04.2019

Since 2015, nine project partners from four countries have been researching how to disassemble electronics and reclaim valuable materials in the EU project "ADIR – Next Generation Urban Mining – Automated Disassembly, Separation and Recovery of Valuable Materials from Electronic Equipment". On May 17, 2019, the project partners will present important results in theory and practice at the ADIR Demo Day in Goslar. The ADIR project is coordinated by the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany.

A magic word is making the rounds: "Urban Mining". This new form of mining recovers secondary raw materials from buildings, infrastructure or products. If put into practice for electronic devices, this ecological idea could be particularly rewarding; however, it is still necessary to develop methods that allow, for example, mobile phones and printed circuit boards to be reliably, automatically and efficiently disassembled into their components in order to recover valuable raw materials for reuse in new electronics.


In the recycling process of the "ADIR" project, the laser takes over the non-contact desoldering of electronic components mounted on printed circuit boards.

©Fraunhofer ILT, Aachen, Germany

Two-part symposium: Recycling of valuable materials in theory and practice

"In the last two years, systems have been developed that have put our project ideas into practice", explains Prof. Reinhard Noll, coordinator of "ADIR" from Fraunhofer ILT. "On May 17, a two-part event will take place in Goslar for a national and international scientific-technical audience."

In the morning, the ADIR consortium partners will report about the results of the EU project and in the afternoon the developed machines and processes will be presented at the facilities of the local Electrocycling GmbH (ECG).

ECG, a certified specialist for environmentally friendly WEEE recycling, is testing the ADIR methods in field tests since 2018 in order to validate them for industrial use. Dr. Cord Fricke-Begemann, scientist at Fraunhofer ILT and "ADIR" project manager, explains, "We will exhibit, with the help of the demonstrator, how laser-based material recycling works in practice on mobile phones and computer boards. ECG shows that the technologies developed in the ADIR project also allow large quantities of valuable materials, such as tantalum, to be recovered from capacitors".

Inverse Production: At the center is the use of lasers

The ADIR team is guided by the concept of so-called inverse production, which, in contrast to conventional shredding and pyrometallurgy processes, in the first instance measures and analyzes the end-of-life electronics and then selectively disassembles valuable components to gain novel, highly enriched sorting fractions. The residual material is fed to proven metallurgical processes.

The project partners are relying on automated, flexible processes with which electronic devices at their end of use can be automatically disassembled into their individual parts. In the disassembly plant, there is a clever interaction of laser technology, robotics, vision systems and information technology.

An important role in this concept is played by laser processes, which, among other things, not only identify ingredients in electronic components in real time, but also desolder or cut-out electronic components without contacting them. The fact that the process can efficiently recycle strategic materials of high economic importance on an industrial scale speaks for itself. Fricke-Begemann: "With ADIR, we are reducing the EU's dependency on natural resources and costly material imports".

Get more information and watch the video: www.adir.eu

Wissenschaftliche Ansprechpartner:

Dr. rer. nat. Cord Fricke-Begemann
Group manager for Materials Analysis
Telephone +49 241 8906-196
cord.fricke-begemann@ilt.fraunhofer.de

Prof. Dr. rer. nat. Reinhard Noll
Competence area manager Measurement Technology and EUV Beam Sources
Telephone +49 241 8906 138
reinhard.noll@ilt.fraunhofer.de

Originalpublikation:

https://www.ilt.fraunhofer.de/en.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Electronic ILT Lasertechnik Recycling electronic devices mobile phones raw materials

More articles from Power and Electrical Engineering:

nachricht EU-project SONAR: Better batteries for electricity from renewable energy sources
17.01.2020 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Scientists pioneer new generation of semiconductor neutron detector
16.01.2020 | DOE/Argonne National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>