Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Kind of Ultraviolet LED could Lead to Portable, Low-Cost Devices

11.09.2013
Light Shines Bright at Precise Frequencies that Suit Commercial Applications

Commercial uses for ultraviolet (UV) light are growing, and now a new kind of LED under development at The Ohio State University could lead to more portable and low-cost uses of the technology.

The patent-pending LED creates a more precise wavelength of UV light than today’s commercially available UV LEDs, and runs at much lower voltages and is more compact than other experimental methods for creating precise wavelength UV light.

The LED could lend itself to applications for chemical detection, disinfection, and UV curing. With significant further development, it might someday be able to provide a source for UV lasers for eye surgery and computer chip manufacture.

In the journal Applied Physics Letters, Ohio State engineers describe how they created LEDs out of semiconductor nanowires which were doped with the rare earth element gadolinium.

The unique design enabled the engineers to excite the rare earth metal by passing electricity through the nanowires, said study co-author Roberto Myers, associate professor of materials science and engineering at Ohio State. But his team didn’t set out to make a UV LED.

“As far as we know, nobody had ever driven electrons through gadolinium inside an LED before,” Myers said. “We just wanted to see what would happen.”

When doctoral students Thomas Kent and Santino Carnevale started creating gadolinium-containing LEDs in the lab, they utilized another patent-pending technology they had helped develop—one for creating nanowire LEDs. On a silicon wafer, they tailor the wires’ composition to tune the polarization of the wires and the wavelength, or color, of the light emitted by the LED.

Gadolinium was chosen not to make a good UV LED, but to carry out a simple experiment probing the basic properties of a new material they were studying, called gadolinium nitride. During the course of that original experiment, Kent noticed that sharp emission lines characteristic of the element gadolinium could be controlled with electric current.

Different elements fluoresce at different wavelengths when they are excited, and gadolinium fluoresces most strongly at a very precise wavelength in the UV, outside of the range of human vision. The engineers found that the gadolinium-doped wires glowed brightly at several specific UV frequencies.

Exciting different materials to generate light is nothing new, but materials that glow in UV are harder to excite. The only other reported device which can electrically control gadolinium light emission requires more than 250 volts to operate. The Ohio State team showed that in a nanowire LED structure, the same effect can occur, but at far lower operating voltages: around 10 volts. High voltage devices are difficult to miniaturize, making the nanowire LEDs attractive for portable applications.

“The other device needs high voltage because it pushes electrons through a vacuum and accelerates them, just like a cathode ray tube in an old-style TV. The high-energy electrons then slam into gadolinium atoms, which absorb the energy and re-emit it as light in the UV,” Myers explained.

“We believe our device works at significantly less voltage precisely because of the LED structure, where the gadolinium is placed in the center of the LED, exactly where electrons are losing their energy. The gadolinium atoms get excited and emit the same UV light, but the device only requires around 10 volts.”

Because the LED emits light at specific wavelengths, it could be useful for research spectroscopy applications that require a reference wavelength, and because it requires only 10 volts, it might be useful in portable devices.

The same technology could conceivably be used to make UV laser diodes. Currently high-powered gas lasers are used to produce a laser at UV wavelengths with applications from advanced electronics manufacturing to eye surgery. The so-called excimer lasers contain toxic gases and run on high voltages, so solid-state lasers are being explored as a lower power—and non-toxic—alternative.

As to cost, Kent pointed out that the team grows its LEDs on a standard silicon wafer, which is inexpensive and easily scaled up to use in industry.

“Using a cheap substrate is good; it balances the cost of manufacturing the nanowires,” he said.

The team is now working to maximize the efficiency of the UV LED, and the university's Technology Commercialization and Knowledge Transfer Office will license the design—as well as the method for making specially doped nanowires—to industry.

This research was sponsored by the National Science Foundation (NSF) and Ohio State’s Center for Emergent Materials, one of a network of Materials Research Science and Engineering Centers funded by NSF.

Contact: Roberto Myers, (614) 292-8439; Myers.1079@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>