Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ITER Technology proves successful

11.09.2008
Fusion for Energy (F4E) with the support of the European Commission, Japan Atomic Energy Agency (JAEA) and ITER Organisation have successfully tested a prototype superconductor for the ITER Poloidal Field coils made of Niobium(Nb)-Titanium(Ti) reaching a stable operation at 52 kA in a magnetic field of 6.4 Tesla. Poloidal Field coils will be used to maintain the plasma equilibrium and shape inside the ITER Tokamak reactor.

“This is a breakthrough for the fusion community. We have successfully tested and demonstrated a key technology milestone which is integral to the success of ITER. Based on these achievements, Europe, Russia and China will proceed with the procurement of the ITER Poloidal Field conductor” said Fusion for Energy Director, Didier Gambier.

The test coil with an outer diameter of 1.5 m and weighing 6 tons was the product of an international collaboration between Russia, Europe and Japan.

Russia produced the 0.73-mm diameter Nb-Ti superconducting strands and bundled them into a cable consisting of 1,440 strands. Europe assembled the cable into a steel jacket to make the final conductor and was also responsible for winding the conductor, insulating the turns and bonding them together to form a coil.

Japan was in charge of testing the coil at the JAEA site in Naka because of its world class expertise with a team of experts from the ITER Organisation, Europe, Japan, Russia and the United States. The results gave scientists complete confidence that this conductor would fulfill the extremely demanding performance required for ITER.

ITER will be the world's largest experimental fusion facility to demonstrate the scientific and technological feasibility of fusion power. Fusion is the process which powers the sun and the stars. When light atomic nuclei fuse together to form heavier ones, a large amount of energy is released. Fusion research is aimed at developing a prototype fusion power plant that is safe, environmentally responsible and economically viable with abundant fuel resources.

Europe will contribute almost half of the costs of its construction, while the other six Members to this joint international venture (China, India, Japan, the Republic of Korea, Russia and the United States), will contribute equally to the rest. The site of the ITER project is at Cadarache, France.

Aris Apollonatos | alfa
Further information:
http://www.fusionforenergy.europa.eu/
http://www.iter.org/
http://fusionforenergy.europa.eu/Procurement_operational.htm

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>