Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long time to charge. It usually takes about 10 to 12 hours for a solid-state battery to fully charge. The new cell type that Jülich scientists have designed, however, takes less than an hour to recharge.


The solid electrolyte serves as a stable carrier material to which the electrodes are currently applied on both sides using the screen printing process.

Forschungszentrum Jülich / Regine Panknin


Test set-up for the solid-state battery: the battery of the size of a button cell is located in the middle of the acrylic glass casing, which ensures permanent contact with the battery.

Forschungszentrum Jülich / Regine Panknin

"With the concepts described to date, only very small charge and discharge currents were possible due to problems at the internal solid-state interfaces. This is where our concept based on a favourable combination of materials comes into play, and we have already patented it," explains Dr. Hermann Tempel, group leader at the Jülich Institute for Energy and Climate Research (IEK-9).

In conventional lithium-ion batteries, a liquid electrolyte is used, which usually contacts the electrodes very well. With their textured surfaces, the electrodes soak up the liquid like a sponge, creating a large contact area. In principle, two solids cannot be joined together seamlessly. The contact resistance between the electrodes and the electrolyte is correspondingly high.

"In order to allow the largest possible flow of current across the layer boundaries, we used very similar materials to produce all components. The anode, cathode, and electrolyte were all made from different phosphate compounds to enable charging rates greater than 3C (at a capacity of about 50 mAh/g). This is ten times higher than the values otherwise found in the literature," explains Hermann Tempel.

The solid electrolyte serves as a stable carrier material to which phosphate electrodes are applied on both sides using the screen printing process. The materials used are reasonably priced and relatively easy to process. Unlike conventional lithium-ion batteries, the new solid-state battery is also largely free of toxic or harmful substances.

"In initial tests, the new battery cell was very stable over 500 charge and discharge cycles and retained over 84 percent of its original capacity," said Dr. Shicheng Yu. "There is still room for improvement here. Theoretically, a capacity loss of less than 1 percent should even be feasible," said Yu, who developed and tested the battery as part of a China Scholarship Council (CSC) funding programme at the Jülich Institute for Energy and Climate Research (IEK-9).

Institute director Prof. Rüdiger-A. Eichel is also convinced of the advantages of the new battery concept. "The energy density is already very high at around 120 mAh/g, even if it is still slightly below that of today’s lithium-ion batteries," says Eichel. In addition to the development for electromobility, the spokesman for the "battery storage" topic in the Helmholtz Association believes solid-state batteries will also be used in other areas in future: "Solid-state batteries are currently being developed with priority as energy storage for next-generation electric vehicles. But we also believe that solid-state batteries will prevail in other fields of application that require a long service life and safe operation, such as medical technology or integrated components in the smart home area," says Eichel.

Originalpublikation:

Originalpublikation: Shicheng Yu, Andreas Mertens, Hermann Tempel, Roland Schierholz, Hans Kungl, and Rüdiger-A. Eichel
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility
ACS Appl. Mater. Interfaces (published online June 12, 2018), DOI: 10.1021/acsami.8b05902

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2018/2018-08-20-its... Press release Forschungszentrum Jülich

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>