Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intelligent components for the power grid of the future


Kiel research team presents prototypes at the Hannover Messe

Fast charging of electric cars requires a lot of energy in a short period of time. These peak loads lead to bottlenecks in the power grid, and are one of the problems facing the expansion of electric mobility. The many challenges of the energy transition require a flexible and reliable power grid, which can accommodate fluctuations in the consumption and production of energy.

Peak loads caused by fast charging of electric cars leads to bottlenecks in the power grid. The energy transition requires a flexible power grid.


A research team around Marco Liserre, Professor of power electronics, has developed the prototype of a smart transformer that regulates the power flow.

Siekmann, CAU

A key element of this could be the smart transformer, which is being researched by the Power Electronics working group at Kiel University. On the basis of power semiconductors made of silicon carbide, they have developed a prototype which automatically regulates the current flow.

It could be used not only for a better integration of charging stations into the power grid, but also for the connection of direct current networks and in data centres. The researchers will present a part of the prototype for the first time at the Hannover Messe.

As part of the expansion of renewable energy, the number of decentralised energy producers and consumers is increasing, e.g. wind turbines and charging stations. "Our conventional infrastructure is designed for reverse power flow," said Professor Marco Liserre from Kiel University.

New components from power electronics could help to distribute the electricity according to demand, and thus better manage the power grid and counteract overloading and outages. Together with his working group, Liserre has developed a power electronics transformer, which can transform medium voltage into low voltage and enables a connection to DC at the same time. "We want to modernise the power grid and prepare it for the energy transition. What we need is a flexible, efficient and above all reliable system," continued Liserre.

Thanks to its modular design, the smart transformer developed in Kiel is maintenance-friendly, and can be easily and cost-effectively scaled for different applications. It could reduce energy consumption and increase security in data centres and in more electric aircraft.

In both environments, the infrastructure is designed with intentional built-in redundancy: multiple systems ensure that operations continue to run reliably and the power supply is not interrupted, even if individual components fail. Because the transformer applied redundancy on the building block level, less redundancy on the electronic level is necessary, which increases reliability and reduces costs.

The basic building block of the current prototype of the intelligent transformer from Kiel connects a low voltage dc with value of 800V and a medium voltage ac with output voltage level of 2.6 kV line-to-line. Moreover, the system can process up to 100 kW of output power. The transformer was developed as part of the European research project HEART (Highly Efficient And Reliable smart Transformer), which has been running at Kiel University since 2014.

From 23-27 April 2018, the research team will be presenting part of its prototype at the Kiel University booth at the Hannover Messe (Hall 2, Research & Technology, Booth C07). Professor Marco Liserre will present the concept of the smart transformer in a lecture on site on Tuesday 24 April at 12 noon and 3pm. The state university is represented at the world's largest industrial trade show for the second time, and presents diverse contributions from the research and innovative location of Schleswig-Holstein:

Photos are available to download:
Caption: Peak loads caused by fast charging of electric cars leads to bottlenecks in the power grid. The energy transition requires a flexible power grid.
Photo/Copyright: Pexels
Capture: A research team around Marco Liserre, Professor of power electronics, has developed the prototype of a smart transformer that regulates the power flow.
Foto/Copyright: Siekmann, CAU
Capture: New components from power electronics could help to distribute the electricity according to demand, and thus better manage the power grid.
Foto/Copyright: Siekmann, CAU

Prof. Dr Marco Liserre
Kiel University
Institute of Electrical Engineering and Information Technology
Tel.: +49 (0)431/880-6100

More information:

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text/editing: Julia Siekmann
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail:, Internet: Twitter: Facebook: Instagram:

Weitere Informationen:

Julia Siekmann | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>