Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In best circles: First integrated circuit from self-assembled polymer

19.02.2018

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used for logic operation in digital circuits and are the building blocks of an integrated circuit. The radical concept of self-assembled electronics has been around since 1976. For decades, the challenge has been to form a self-assembled monolayer of a semiconducting polymer in a transistor.


The scientists made an IC from a monolayer of a semiconducting polymer.

Copyright: MPI for Polymer Research

“The idea is that all components of a transistor come together and arrange themselves in a hierarchical order”, said Kamal Asadi, leader of the Humboldt research group at the MPI for Polymer Research. The monolayer is highly ordered and is able to conduct electric charge carriers well. The research team has used solution of a polymer. By dipping the transistor substrate in the solution in a controlled manner, the researchers could grow and produce a complete polymeric monolayer.

Scientific breakthrough

To achieve their scientific breakthrough, the scientists have intentionally dissolved the semiconducting polymer in an organic solvent that could not fully dissolve the polymer. In this way, the scientists have made the first self-assembled monolayer polymer field-effect transistor (PoM-FET). Nevertheless, one PoM-FET does not make a functional integrated circuit.

Therefore, the research team has integrated hundreds of PoM-FETs and has operated them at the same time to demonstrate a 15-bit code generator, an integrated circuit that converts a voltage into a digital code. The landmark scientific result has applications in flexible electronics and fast response sensors.

International research collaboration

The scientific work was a collaboration of several international research groups worldwide. The semiconducting polymer was synthesized by the group of Professor He Yan at the Hong Kong University of Science and Technology, Hong Kong. The polymeric monolayers were analyzed by the group of Professor Harald Ade at the North Carolina State University in USA, and by the group of Professor Wojtek Pisula at the Lodz University of Technology, Poland. The PoM-FETs and the integrated circuits were fabricated at the MPI for Polymer Research, Mainz, Germany. Post-doctoral researcher Mengmeng Li conducted the research work that was led by Kamal Asadi together with Wojtek Pisula.

About the Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research (MPI-P) ranks among the globally leading research centers in the field of polymer research since its foundation in 1984. The focus on soft materials and macromolecular materials has resulted in the worldwide unique position of the MPI-P and its research focus. Fundamental polymers research on both production and characterization as well as analysis of physical and chemical properties are conducted by scientific collaborators from all over the world. Presently over 500 people are working at the MPI-P, the vast majority of whom are engaged in scientific research.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/home/en
https://www.humboldt-foundation.de/web/home.html

Kerstin Felix | Max-Planck-Institut für Polymerforschung

More articles from Power and Electrical Engineering:

nachricht High-speed surveillance in solar cells catches recombination red-handed
14.02.2019 | Osaka University

nachricht Sodium is the new lithium: Researchers find a way to boost sodium-ion battery performance
04.02.2019 | Nagoya Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>