Improving Nanometer-Scale Manufacturing with Infrared Spectroscopy

One of the key achievements of the nanotechnology era is the development of manufacturing technologies that can fabricate nanostructures formed from multiple materials. Such nanometer-scale integration of composite materials has enabled innovations in electronic devices, solar cells, and medical diagnostics.

While there have been significant breakthroughs in nano-manufacturing, there has been much less progress on measurement technologies that can provide information about nanostructures made from multiple integrated materials. Researchers at the University of Illinois at Urbana-Champaign and Anasys Instruments Inc. now report new diagnostic tools that can support cutting-edge nano-manufacturing.

“We have used atomic force microscope based infrared spectroscopy (AFM-IR) to characterize polymer nanostructures and systems of integrated polymer nanostructures,” said William King, the College of Engineering Bliss Professor in the Department of Mechanical Science and Engineering. “In this research, we have been able to chemically analyze polymer lines as small as 100 nm. We can also clearly distinguish different nanopatterned polymers using their infrared absorption spectra as obtained by the AFM-IR technique.”

Atomic Force Microscope Infrared Spectroscopy (AFM-IR) is a nanotechnology-based materials identification technique.

In AFM-IR, a rapidly pulsed infrared (IR) laser is directed on upon a thin sample which absorbs the IR light and undergoes rapid thermomechanical expansion. An AFM tip in contact with the polymer nanostructure resonates in response to the expansion, and this resonance is measured by the AFM.

“While nanotechnologists have long been interested in the manufacturing of integrated nanostructures, they have been limited by the lack of tools that can identify material composition at the nanometer scale.” said Craig Prater, co-author on the study and chief technology officer of Anasys Instruments Inc. “The AFM-IR technique offers the unique capability to simultaneously map the nanoscale morphology and perform chemical analysis at the nanoscale.”

The paper is titled, “Nanometer-Scale Infrared Spectroscopy of Heterogeneous Polymer Nanostructures Fabricated by Tip-Based Nanofabrication,” The authors are Jonathan Felts and William King of University of Illinois at Urbana-Champaign and Kevin Kjoller, Michael Lo, and Craig Prater of Anasys Instruments Inc.

The research, published this month in ACS Nano, is available online at DOI:10.1021/nn302620f. The research was sponsored by the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, and the Department of Energy.

Contact: William P. King, Department of Mechanical Science and Engineering, 217/244-3864.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors