Improved resistance to short circuits

Short circuits are expensive for power plants and electricity grids. Already during the construction of the plants, each component has to be designed to withstand the maximum possible loading in the case of a short circuit. If an incident does actually occur, downtimes and damaged system components can cause additional costs.

The BINE-Projektinfo brochure “Superconductive fault current limiters in power plants” (12/2011) presents a new kind of system for controlling short circuits that can substantially increase the safety, availability and reliability of electrical systems in power plants and when expanding electricity grids.

Superconductive fault current limiters do not influence the current flow in normal operation, since they do not provide any significant resistance. However, if the current density increases above a threshold value, the superconductivity collapses and an electrical resistance instantly forms within a few milliseconds. This helps to limit the effects of short-circuit events. Various system designs enable such components to be adapted to the specific requirements on site. The first generation of superconductive fault current limiters are based on ceramic materials. A number of prototypes are currently being tested in various locations. With the upcoming expansion of the electricity grid in Germany, these fault current limiters can help prevent expensive retrofitting and facilitate the integration of new, decentralised small-scale power plants (e.g. wind farms).

A superconductive fault current limiter was used for the first time in the Boxberg power plant in 2009. In the near future, it is planned to test a second-generation system based on metal tape with a thin coating of extremely high performing superconductive materials at the same location. The BINE Projektinfo brochure “Superconductive fault current limiters in power plants” (12/2011), which can be obtained free of charge from the BINE Information Service at FIZ Karlsruhe, is available online at http://www.bine.info/en.

Press contact
Uwe Milles
presse(at)bine.info
About BINE Information Service
Energy research for practical applications
The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology

FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Media Contact

Rüdiger Mack idw

More Information:

http://www.bine.info/en

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors