Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging method sheds light on cell growth

26.08.2011
University of Illinois researchers are giving a light answer to the heavy question of cell growth.

Led by electrical and computer engineering professor Gabriel Popescu, the research team developed a new imaging method called spatial light interference microscopy (SLIM) that can measure cell mass using two beams of light.

Described in the Proceedings of the National Academy of Science, the SLIM technique offers new insight into the much-debated problem of whether cells grow at a constant rate or exponentially.

SLIM is extremely sensitive, quantitatively measuring mass with femtogram accuracy. By comparison, a micron-sized droplet of water weighs 1,000 femtograms. It can measure the growth of a single cell, and even mass transport within the cell. Yet, the technique is broadly applicable.

“A significant advantage over existing methods is that we can measure all types of cells – bacteria, mammalian cells, adherent cells, nonadherent cells, single cells and populations,” said Mustafa Mir, a graduate student and a first author of the paper. “And all this while maintaining the sensitivity and the quantitative information that we get.”

Unlike most other cell-imaging techniques, SLIM – a combination of phase-contrast microscopy and holography – does not need staining or any other special preparation. Because it is completely non-invasive, the researchers can study cells as they go about their natural functions. It uses white light and can be combined with more traditional microscopy techniques, such as fluorescence, to monitor cells as they grow.

“We were able to combine more traditional methods with our method because this is just an add-on module to a commercial microscope,” Mir said. “Biologists can use all their old tricks and just add our module on top.”

Because of SLIM’s sensitivity, the researchers could monitor cells’ growth through different phases of the cell cycle. They found that mammalian cells show clear exponential growth only during the G2 phase of the cell cycle, after the DNA replicates and before the cell divides. This information has great implications not only for basic biology, but also for diagnostics, drug development and tissue engineering.

The researchers hope to apply their new knowledge of cell growth to different disease models. For example, they plan to use SLIM to see how growth varies between normal cells and cancer cells, and the effects of treatments on the growth rate.

Popescu, a member of the Beckman Institute for Advanced Science and Technology at the U. of I., is establishing SLIM as a shared resource on the Illinois campus, hoping to harness its flexibility for basic and clinical research in a number of areas.

“It could be used in many applications in both life sciences and materials science,” said Popescu, who also is a professor of physics and of bioengineering. “The interferometric information can translate to the topography of silicon wafers or semiconductors. It’s like an iPad – we have the hardware, and there are a number of different applications dedicated to specific problems of interest to different labs.”

Co-authors on the paper include graduate students Zhuo Wang, Zhen Shen and Michael Bednarz, along with electrical and computer engineering professor Rashid Bashir, physics professor Ido Golding and cell and developmental biology professor Supriya G. Prasanth.

The National Science Foundation and the Grainger Foundation supported this work.

Editor’s notes: To reach Gabriel Popescu, call 217-333-4840; email gpopescu@illinois.edu.

The paper, “Optical Measurement of Cycle-Dependent Cell Growth,” is available online.

CONTACT: Liz Ahlberg, Physical Sciences Editor 217-244-1073; eahlberg@illinois.edu

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>