Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HZB researchers are used to boost the efficiency of silicon solar cells


The efficiency of a solar cell is one of its most important parameters. It indicates what percentage of the solar energy radiated into the cell is converted into electrical energy. The theoretical limit for silicon solar cells is 29.3 percent due to physical material properties. In the journal Materials Horizons, researchers from Helmholtz-Zentrum Berlin (HZB) and international colleagues describe how this limit can be abolished.

The trick: they incorporate layers of organic molecules into the solar cell. These layers utilise a quantum mechanical process known as singlet exciton fission to split certain energetic light (green and blue photons) in such a way that the electrical current of the solar cell can double in that energy range.

Principle of a silicon singlet fission solar cell with incorporated organic crystalls.

M. Künsting/HZB

The principle of a solar cell is simple: per incident light particle (photon) a pair of charge carriers (exciton) consisting of a negative and a positive charge carrier (electron and hole) is generated. These two opposite charges can move freely in the semiconductor.

When they reach the charge-selective electrical contacts, one only allows positive charges to pass through, the other only negative charges. A direct electrical current is therefore generated, which can be used by an external consumer.

The team around HZB researcher, Prof. Klaus Lips, gives now a solution to build the solar cell in such a way that certain high energy photons are used to generate two pairs of charge carrier simultaneously. The effect they used resides in some organic crystals and is known as “singlet exciton fission” (SF). In order for this multiplier effect to be possible, charge carrier pairs have to fulfill certain quantum physical conditions: all their spins have to be parallel meaning charge carrier pairs called triplet exciton.

These triplet excitons are quite durable and very strongly bound together. The challenge was to split apart them at an interface to silicon. This unbinds the positive and negative charge carriers, permitting them to contribute to the solar cell’s current.

In a pioneering experiment the researchers have shown the splitting to be possible. "With implementing this concept successfully, we can make a silicon solar cell with a maximum quantum efficiency of 200 percent (double the normal limit), and a theoretical efficiency limit of around 40 percent," says Dr. Rowan MacQueen, an Australian researcher who joined the HZB team two years ago and is realizing the charge carrier multiplier solar cell at the HZB.

In the recently-reported work, the HZB researchers integrated a 100 nanometer thick layer of singlet fission-capable tetracene crystals into the surface of a silicon solar cell. Using spectroscopic investigations, triplet charge carrier pairs in the thin tetracene layer were detected, a signature of singlet fission.

"The challenge was to separate the triplet pairs at the silicon interface without significantly disrupting the current flow of the silicon solar cell," explains Klaus Lips, since a poorly conducting organic layer borders on the well conducting silicon layer, a situation that could greatly impede the current flow.

The splitting succeeds with an additionally introduced organic conductor called PEDOT:PSS meaning another organic layer is necessary. “The interfaces play a special role in this structure,” says Dr. MacQueen, which is why the researchers used X-ray light from the BESSY II@HZB synchrotron to study the interface properties. They then fabricated a series of working tetracene-silicon solar cells. A key finding was that the addition of the organic layer did not impede the electrical performance of the silicon cell, which is critical for producing an efficient device.

The electrical performance of the first silicon singlet fission solar cell showed that tetracene absorbs the blue-green portion of the light, while low-energy photons are absorbed by the silicon. Using a simulation, the researchers were able to estimate that currently about 5-10 percent of the triplet pairs generated in the tetracene layer could be added to the output power.

For Klaus Lips this is a great success but he is already considering follow-up experiments: "With this solar cell structure, we have shown that the approach works in principle, and delivered a workhorse design. And we already know what we have to do to increase the yield of separated triplet excitons to up to 200 percent".

Further Information:

The race for the best efficiencies in silicon technology

Despite many new developments, silicon is currently the material of choice in solar cell production. The production technologies are mature, the best solar cells today reach efficiencies of around 25 percent. The theoretical maximum efficiency of the semiconductor of 29.3 percent is almost reached. Research groups worldwide do not want to settle for this. They are looking for different ways to increase the limit.

Most of the loss is due to converting some of the incident light energy into heat and thus losing it. Only part of the light spectrum can be used to actually generate electrical power. A frequently used approach for reducing heat losses is therefore the so-called tandem solar cell. It combines silicon with an additional material that can utilize other areas of the light spectrum than silicon. Promising are currently silicon perovskite tandems, which HZB is also researching in.

For example, see this report:

Klaus Lips and his team are taking different paths and want to work without incorporating a new solar cell material. A few years ago, they showed experiments on so-called photochemical upconversion. Here are two low-energy photons, which actually remain ineffective in the solar cell, bundled into a high-energy photon, which then contributes to the output power.
The singlet fission approach presented here is a new, promising method of quantum physics that can give photovoltaic technology a new boost.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Klaus Lips (
Dr. Rowan MacQueen (


DOI: 10.1039/c8mh00853a

Weitere Informationen:

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

Science & Research
Overview of more VideoLinks >>>