Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human-robot interaction: sensor-controlled assembly

18.03.2014

At a joint stand of the European research initiative SMErobotics, scientists from Fraunhofer IPA will demonstrate a sensor-controlled lightweight assembly robot that allows the high-quality, profitable automation of previously manual assembly processes, especially in the small-scale production sector.

The focus is on effective human-robot interaction at a workstation similar to those on a shop floor, the goal being to enable the worker to easily program the robot and use it intuitively like a tool.


Sensor-controlled assembly.

Image credit: Fraunhofer IPA

Growing cost pressure, short product life cycles and high product diversity call for flexible and cost-effective assembly systems that can be quickly adapted to suit changed requirements. Scientists at Fraunhofer IPA have developed a sensor-controlled assembly process that makes it possible for workpieces to be localized and positioned.

Work-holding fixtures are extensively replaced by sensors, this offering flexibility at low cost. Other advantages are that the robot is designed to be easily programmable and capable of dealing with tolerances.

Using a robot as a tool

“Our aim is to demonstrate that sensor-controlled robots are capable of coping with modern-day conditions at manual assembly workstations, such as chaotically arranged components,” says Martin Naumann, Group Leader in the Robot and Assistance Systems department at Fraunhofer IPA. The emphasis is on effective human-robot interaction. Selected assembly processes are carried out manually, while others are automated. The robot is intended to be used as a tool.

At the joint stand of the European research initiative SMErobotics, Fraunhofer IPA will demonstrate sensor-controlled assembly in a robot cell with the KUKA LBR iiwa. “At a manual workstation, we’ll use the lightweight robot to carry out riveting processes as an example.

However, the underlying concepts can equally well be applied to other assembly processes,” explains Naumann. The components are made available within the robot’s working area without the need for any separate work-holding fixture.

The robot moves to the determined location and localizes the exact riveting position on the component using a stereo camera integrated in the robotic tool. “We’re highly interested in transferring the exhibited solution to new applications – especially at small and medium-sized manufacturing enterprises, where manual work processes prevail,” says Naumann.

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 131

Weitere Informationen:

http://www.automatica-munich.com
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automation Automatisierung IPA Produktionstechnik SMErobotics Trade cycles pressure processes

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>