Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvesting Electricity: Triboelectric Generators Capture Wasted Power

10.12.2013
With one stomp of his foot, Zhong Lin Wang illuminates a thousand LED bulbs – with no batteries or power cord.

The current comes from essentially the same source as that tiny spark that jumps from a fingertip to a doorknob when you walk across carpet on a cold, dry day. Wang and his research team have learned to harvest this power and put it to work.

A professor at the Georgia Institute of Technology, Wang is using what’s technically known as the triboelectric effect to create surprising amounts of electric power by rubbing or touching two different materials together. He believes the discovery can provide a new way to power mobile devices such as sensors and smartphones by capturing the otherwise wasted mechanical energy from such sources as walking, the wind blowing, vibration, ocean waves or even cars driving by.

Beyond generating power, the technology could also provide a new type of self-powered sensor, allowing detection of vibrations, motion, water leaks, explosions – or even rain falling. The research has been supported by a variety of sponsors, including the National Science Foundation; U.S. Department of Energy; MANA, part of the National Institute for Materials in Japan; Korean corporation Samsung and the Chinese Academy of Sciences. The research has been reported in journals including ACS Nano, Advanced Materials, Angewandte Chemie, Energy and Environmental Sciences, Nano Energy and Nano Letters.

“We are able to deliver small amounts of portable power for today’s mobile and sensor applications,” said Wang, a Regents professor in Georgia Tech’s School of Materials Science and Engineering. “This opens up a source of energy by harvesting power from activities of all kinds.”

In its simplest form, the triboelectric generator uses two sheets of dissimilar materials, one an electron donor, the other an electron acceptor. When the materials are in contact, electrons flow from one material to the other. If the sheets are then separated, one sheet holds an electrical charge isolated by the gap between them. If an electrical load is then connected to two electrodes placed at the outer edges of the two surfaces, a small current will flow to equalize the charges.

By continuously repeating the process, an alternating current can be produced. In a variation of the technique, the materials – most commonly inexpensive flexible polymers – produce current if they are rubbed together before being separated. Generators producing DC current have also been built.

“The fact that an electric charge can be produced through triboelectrification is well known,” Wang explained. “What we have introduced is a gap separation technique that produces a voltage drop, which leads to a current flow in the external load, allowing the charge to be used. This generator can convert random mechanical energy from our environment into electric energy.”

Since their first publication on the research, Wang and his research team have increased the power output density of their triboelectric generator by a factor of 100,000 – reporting that a square meter of single-layer material can now produce as much as 300 watts. They have found that the volume power density reaches more than 400 kilowatts per cubic meter at an efficiency of more than 50 percent. The researchers have expanded the range of energy-gathering techniques from “power shirts” containing pockets of the generating material to shoe inserts, whistles, foot pedals, floor mats, backpacks and floats bobbing on ocean waves.

They have learned to increase the power output by applying micron-scale patterns to the polymer sheets. The patterning effectively increases the contact area and thereby increases the effectiveness of the charge transfer.

Wang and his team accidentally discovered the power generating potential of the triboelectric effect while working on piezoelectric generators, which use a different phenomenon. The output from one piezoelectric device was much larger than expected, and the cause of the higher output was traced to incorrect assembly that allowed two polymer surfaces to rub together. Six months of development led to the first journal paper on the triboelectric generator in 2012.

“When two materials are in physical contact, the triboelectrification occurs,” said Wang, who holds the Hightower Chair in the Georgia Tech School of Materials Science and Engineering. “When they are moved apart, there is a gap distance created. To equalize the local charge, electrons have to flow. We are getting surprisingly high voltage and current flow from this. As of now, we have discovered four basic modes of triboelectric generators.”

Since their initial realization of the possibilities for this effect, Wang’s team has expanded applications. They can now produce current from contact between water – sea water, tap water and even distilled water – and a patterned polymer surface. Their latest paper, published in the journal ACS Nano in November, described harvesting energy from the touch pad of a laptop computer.

They are now using a wide range of materials, including polymers, fabrics and even papers. The materials are inexpensive, and can include such sources as recycled drink bottles. The generators can be made from nearly-transparent polymers, allowing their use in touch pads and screens.

Beyond its use as a power source, Wang is also using the triboelectric effect for sensing without an external power source. Because the generators produce current when they are perturbed, they could be used to measure changes in flow rates, sudden movement, or even falling raindrops.

“If a mechanical force is applied to these generators, they will produce an electrical current and voltage,” he said. “We can measure that current and voltage as electrical signals to determine the extent of the mechanical agitation. Such sensors could be used for monitoring in traffic, security, environmental science, health care and infrastructure applications.”

For the future, Wang and his research team plan to continue studying the generators and sensors to improve their output and sensitivity. The size of the material can be scaled up, and multiple layers can boost power output.

“Everybody has seen this effect, but we have been able to find practical applications for it,” said Wang. “It’s very simple, and there is much more we can do with this.”

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under award DE-FG02-07ER46394; by the National Science Foundation under award CMMI-0946418; by MANA, part of the National Institute for Materials Science in Japan; by Samsung, and by the Knowledge Innovation Program of the Chinese Academy of Sciences under award KJCX2-YW-M13. Any conclusions or recommendations are those of the authors and do not necessarily represent the official views of the sponsoring organizations.

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Sustainable energy supply in developing and emerging countries: What are the needs?
21.11.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Sustainable energy supply in developing and emerging countries: What are the needs?

21.11.2018 | Power and Electrical Engineering

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>