Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvesting Electricity: Triboelectric Generators Capture Wasted Power

10.12.2013
With one stomp of his foot, Zhong Lin Wang illuminates a thousand LED bulbs – with no batteries or power cord.

The current comes from essentially the same source as that tiny spark that jumps from a fingertip to a doorknob when you walk across carpet on a cold, dry day. Wang and his research team have learned to harvest this power and put it to work.

A professor at the Georgia Institute of Technology, Wang is using what’s technically known as the triboelectric effect to create surprising amounts of electric power by rubbing or touching two different materials together. He believes the discovery can provide a new way to power mobile devices such as sensors and smartphones by capturing the otherwise wasted mechanical energy from such sources as walking, the wind blowing, vibration, ocean waves or even cars driving by.

Beyond generating power, the technology could also provide a new type of self-powered sensor, allowing detection of vibrations, motion, water leaks, explosions – or even rain falling. The research has been supported by a variety of sponsors, including the National Science Foundation; U.S. Department of Energy; MANA, part of the National Institute for Materials in Japan; Korean corporation Samsung and the Chinese Academy of Sciences. The research has been reported in journals including ACS Nano, Advanced Materials, Angewandte Chemie, Energy and Environmental Sciences, Nano Energy and Nano Letters.

“We are able to deliver small amounts of portable power for today’s mobile and sensor applications,” said Wang, a Regents professor in Georgia Tech’s School of Materials Science and Engineering. “This opens up a source of energy by harvesting power from activities of all kinds.”

In its simplest form, the triboelectric generator uses two sheets of dissimilar materials, one an electron donor, the other an electron acceptor. When the materials are in contact, electrons flow from one material to the other. If the sheets are then separated, one sheet holds an electrical charge isolated by the gap between them. If an electrical load is then connected to two electrodes placed at the outer edges of the two surfaces, a small current will flow to equalize the charges.

By continuously repeating the process, an alternating current can be produced. In a variation of the technique, the materials – most commonly inexpensive flexible polymers – produce current if they are rubbed together before being separated. Generators producing DC current have also been built.

“The fact that an electric charge can be produced through triboelectrification is well known,” Wang explained. “What we have introduced is a gap separation technique that produces a voltage drop, which leads to a current flow in the external load, allowing the charge to be used. This generator can convert random mechanical energy from our environment into electric energy.”

Since their first publication on the research, Wang and his research team have increased the power output density of their triboelectric generator by a factor of 100,000 – reporting that a square meter of single-layer material can now produce as much as 300 watts. They have found that the volume power density reaches more than 400 kilowatts per cubic meter at an efficiency of more than 50 percent. The researchers have expanded the range of energy-gathering techniques from “power shirts” containing pockets of the generating material to shoe inserts, whistles, foot pedals, floor mats, backpacks and floats bobbing on ocean waves.

They have learned to increase the power output by applying micron-scale patterns to the polymer sheets. The patterning effectively increases the contact area and thereby increases the effectiveness of the charge transfer.

Wang and his team accidentally discovered the power generating potential of the triboelectric effect while working on piezoelectric generators, which use a different phenomenon. The output from one piezoelectric device was much larger than expected, and the cause of the higher output was traced to incorrect assembly that allowed two polymer surfaces to rub together. Six months of development led to the first journal paper on the triboelectric generator in 2012.

“When two materials are in physical contact, the triboelectrification occurs,” said Wang, who holds the Hightower Chair in the Georgia Tech School of Materials Science and Engineering. “When they are moved apart, there is a gap distance created. To equalize the local charge, electrons have to flow. We are getting surprisingly high voltage and current flow from this. As of now, we have discovered four basic modes of triboelectric generators.”

Since their initial realization of the possibilities for this effect, Wang’s team has expanded applications. They can now produce current from contact between water – sea water, tap water and even distilled water – and a patterned polymer surface. Their latest paper, published in the journal ACS Nano in November, described harvesting energy from the touch pad of a laptop computer.

They are now using a wide range of materials, including polymers, fabrics and even papers. The materials are inexpensive, and can include such sources as recycled drink bottles. The generators can be made from nearly-transparent polymers, allowing their use in touch pads and screens.

Beyond its use as a power source, Wang is also using the triboelectric effect for sensing without an external power source. Because the generators produce current when they are perturbed, they could be used to measure changes in flow rates, sudden movement, or even falling raindrops.

“If a mechanical force is applied to these generators, they will produce an electrical current and voltage,” he said. “We can measure that current and voltage as electrical signals to determine the extent of the mechanical agitation. Such sensors could be used for monitoring in traffic, security, environmental science, health care and infrastructure applications.”

For the future, Wang and his research team plan to continue studying the generators and sensors to improve their output and sensitivity. The size of the material can be scaled up, and multiple layers can boost power output.

“Everybody has seen this effect, but we have been able to find practical applications for it,” said Wang. “It’s very simple, and there is much more we can do with this.”

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under award DE-FG02-07ER46394; by the National Science Foundation under award CMMI-0946418; by MANA, part of the National Institute for Materials Science in Japan; by Samsung, and by the Knowledge Innovation Program of the Chinese Academy of Sciences under award KJCX2-YW-M13. Any conclusions or recommendations are those of the authors and do not necessarily represent the official views of the sponsoring organizations.

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
Writer: John Toon

John Toon | Newswise
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>