Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Alliance of Solar Energy Research Institutes

13.07.2012
World leading solar research institutes sign agreement
Three leading solar research institutes: the U.S. Department of Energy’s National Renewable Energy Laboratory, NREL (USA), Fraunhofer Institute for Solar Energy Systems ISE (Germany) and the National Institute of Advanced Industrial Science and Technology AIST (Japan) yesterday signed a Memorandum of Understanding to form the Global Alliance of Solar Energy Research Institutes GA-SERI.

The signing ceremony was part of the opening session of the fifth Intersolar North America in San Francisco, a leading trade show and conference for the solar industry in North America and co-located with SEMICON West, the leading semiconductor industry exhibition.

In the Global Alliance of Solar Energy Research Institutes, regular scientific exchanges between the three institutions will be the basis for close cooperation. It is intended to have two scientists from each institute in residence at each of the other research centers.

The forming of this Alliance is a response to the rapidly growing relevance of solar energy harvesting thermally or with photovoltaics at rapidly decreasing costs. These technologies will form a key pillar of the future energy system which will be sustainable and carbon-free. The newly founded alliance will give the research in this important field a global voice.

About NREL (National Renewable Energy Laboratory)
NREL is a national laboratory managed and operated by the Alliance for Sustainable Energy, LLC for the United States Department of Energy. Integral to its mission for the U.S. Department of Energy, NREL conducts research and development in renewable energy and energy efficiency technologies and practices, advances related science and engineering, and transfers knowledge and innovation to address the United States’ energy and environmental goals. NREL is supported by funding from the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Within the PV programs, researchers support the development of new designs and manufacturing processes for solar materials, components, and systems with an emphasis on improved performance, reliability and service life. Long-term research and development is an essential element for cost reduction, improved reliability, and improved performance of technologies currently supported by the Solar Energy Technologies Program at DOE. NREL's long-term R&D activities include the development of advanced materials and designs for new generation solar PV devices. Collaborative activities among the world’s foremost players in the field of solar energy research from Germany, Japan, and the US will lead to a significant acceleration of progress in these fields.

About Fraunhofer ISE
The Fraunhofer Institute for Solar Energy Systems is a part of the Fraunhofer-Gesellschaft, the leading organization for applied research in Europe. With a total staff of more than 1100, including students, Fraunhofer ISE is the largest solar energy research institute in Europe. Fraunhofer ISE is member of and plays a leading role within the Fraunhofer Energy Alliance which brings together the expertise in energy research of several Fraunhofer institutes; furthermore it is closely connected with the Fraunhofer Center for Sustainable Energy Systems (CSE) of Fraunhofer's subsidiary, Fraunhofer USA Inc., located in Cambridge, Massachusetts, USA. Fraunhofer ISE conducts research on the technology needed to supply energy efficiently and on an environmentally sound basis in industrialized, threshold and developing countries. To this purpose, the Institute develops systems, components, materials and processes in the areas of the thermal use of solar energy, solar building, solar cells, electrical power supplies, chemical energy conversion, energy storage and the rational use of energy. More than 90 % of the operating funds of Fraunhofer ISE of about 60 million euro are based on competitive contracts provided by industry, governmental bodies and the European Commission. About 50% come from industrial contracts alone.

About AIST/RCPVT (Research Center for Photovoltaic Technologies (RCPVT)
RCPVT is a research unit of the National Institute of Advanced Industrial Science and Technology (AIST). It is focused on the dynamic development of photovoltaic technologies to realize national energy security, a low carbon society, and sustainable economic growth and job creation through a comprehensive and systematic approach. To this end, AIST/RCPVT conducts research on a variety of photovoltaic materials and devices, such as Si, compound semiconductors, organic materials and novel concept materials. It develops calibration, measurement and system technologies together with industries, universities, research institutes and certification bodies. AIST/RCPVT consists of about 200 researchers including permanent staff, temporary staff and visiting staff from industry and academia.

Karin Schneider | Fraunhofer-Institut
Further information:
http://www.ise.fraunhofer.de/en

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>