Generating energy from ocean waters off Hawaii

The technology, referred to as Ocean Thermal Energy Conversion (OTEC), is described in the Journal of Renewable and Sustainable Energy, which is published by the American Institute of Physics (AIP).

It involves placing a heat engine between warm water collected at the ocean's surface and cold water pumped from the deep ocean. Like a ball rolling downhill, heat flows from the warm reservoir to the cool one. The greater the temperature difference, the stronger the flow of heat that can be used to do useful work such as spinning a turbine and generating electricity.

The history of OTEC dates back more than a half century. However, the technology has never taken off — largely because of the relatively low cost of oil and other fossil fuels. But if there are any places on Earth where large OTEC facilities would be most cost competitive, it is where the ocean temperature differentials are the greatest.

Analyzing data from the National Oceanic and Atmospheric Administration's National Oceanographic Data Center, the University of Hawaii's Gérard Nihous says that the warm-cold temperature differential is about one degree Celsius greater on the leeward (western) side of the Hawaiian Islands than that on the windward (eastern) side.

This small difference translates to 15 percent more power for an OTEC plant, says Nihous, whose theoretical work focuses on driving down cost and increasing efficiency of future facilities, the biggest hurdles to bringing the technology to the mainstream.

“Testing that was done in the 1980s clearly demonstrates the feasibility of this technology,” he says. “Now it's just a matter of paying for it.”

More information in the project, see: http://hinmrec.hnei.hawaii.edu/ongoing-projects/otec-thermal-resource/

The article, “Mapping available Ocean Thermal Energy Conversion resources around the main Hawaiian Islands with state-of-the-art tools” by Gérard C. Nihous will appear in the Journal of Renewable and Sustainable Energy. See: http://jrse.aip.org/jrsebh/v2/i4/p043104_s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

Nihous' research is supported by the University of Hawaii's National Marine Renewable Energy Center, which is funded by the U.S. Department of Energy. See: http://hinmrec.hnei.hawaii.edu/

NOTE: Images are available for journalists. Please contact jbardi@aip.org

Image Caption #1: Average ocean temperature differences (at water depths of between 20 meters and 1000 meters depths) around the main Hawaiian Islands for the period July 1, 2007 through June 30, 2009 (the color palette is from 18°C to 24°C); the relatively more favorable area in the lee of the islands is clearly visible.

Image #1 Source/Credit: Data from HYCOM (an academia-industry consortium, see: http://www.hycom.org/ and NCODA, public data from the U.S. Navy, see: https://www.fnmoc.navy.mil/public/. Image provided by Gerard Nihous.

Image Caption #2: An example of early OTEC field work in Hawaii: aerial view of the land-based experimental open-cycle OTEC plant that operated between 1993 and 1998 on the Big Island. The facility still holds the world record for OTEC power production, with turbo-generator output exceeding 250 kW and more than 100 kW of net power exported to the grid.

Image #2 Photo credit: Luis Vega.

Audio clip portions of an interview with the researcher is also available. For more details, contact: jbardi@aip.org

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY

Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal published by the American Institute of Physics (AIP) that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. As an electronic-only, Web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. See: http://jrse.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Media Contact

Jason Socrates Bardi EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors