Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generating electrical power from waste heat

10.07.2018

New Sandia solid-state silicon device may one day power space missions

Directly converting electrical power to heat is easy. It regularly happens in your toaster, that is, if you make toast regularly. The opposite, converting heat into electrical power, isn't so easy.


This tiny silicon-based device developed at Sandia National Laboratories can catch and convert waste heat into electrical power. The rectenna, short for rectifying antenna, is made of common aluminum, silicon and silicon dioxide using standard processes from the integrated circuit industry.

Photo by Randy Montoya/Sandia National Laboratories


Sandia National Laboratories physicist Paul Davids hopes that his team's rectenna may someday replace radioisotope thermoelectric generators as the go-to compact power supply for deep space missions and other uses where you can't just go and replace the batteries.

Photo by Randy Montoya/Sandia National Laboratories

Researchers from Sandia National Laboratories have developed a tiny silicon-based device that can harness what was previously called waste heat and turn it into DC power. Their advance was recently published in Physical Review Applied.

"We have developed a new method for essentially recovering energy from waste heat. Car engines produce a lot of heat and that heat is just waste, right? So imagine if you could convert that engine heat into electrical power for a hybrid car. This is the first step in that direction, but much more work needs to be done," said Paul Davids, a physicist and the principal investigator for the study.

"In the short term we're looking to make a compact infrared power supply, perhaps to replace radioisotope thermoelectric generators." Called RTGs, the generators are used for such tasks as powering sensors for space missions that don't get enough direct sunlight to power solar panels.

Davids' device is made of common and abundant materials, such as aluminum, silicon and silicon dioxide -- or glass -- combined in very uncommon ways.

Silicon device catches, channels and converts heat into power

Smaller than a pinkie nail, the device is about 1/8 inch by 1/8 inch, half as thick as a dime and metallically shiny. The top is aluminum that is etched with stripes roughly 20 times smaller than the width of a human hair. This pattern, though far too small to be seen by eye, serves as an antenna to catch the infrared radiation.

Between the aluminum top and the silicon bottom is a very thin layer of silicon dioxide. This layer is about 20 silicon atoms thick, or 16,000 times thinner than a human hair. The patterned and etched aluminum antenna channels the infrared radiation into this thin layer.

The infrared radiation trapped in the silicon dioxide creates very fast electrical oscillations, about 50 trillion times a second. This pushes electrons back and forth between the aluminum and the silicon in an asymmetric manner. This process, called rectification, generates net DC electrical current.

The team calls its device an infrared rectenna, a portmanteau of rectifying antenna. It is a solid-state device with no moving parts to jam, bend or break, and doesn't have to directly touch the heat source, which can cause thermal stress.

Infrared rectenna production uses common, scalable processes

Because the team makes the infrared rectenna with the same processes used by the integrated circuit industry, it's readily scalable, said Joshua Shank, electrical engineer and the paper's first author, who tested the devices and modeled the underlying physics while he was a Sandia postdoctoral fellow.

He added, "We've deliberately focused on common materials and processes that are scalable. In theory, any commercial integrated circuit fabrication facility could make these rectennas."

That isn't to say creating the current device was easy. Rob Jarecki, the fabrication engineer who led process development, said, "There's immense complexity under the hood and the devices require all kinds of processing tricks to build them."

One of the biggest fabrication challenges was inserting small amounts of other elements into the silicon, or doping it, so that it would reflect infrared light like a metal, said Jarecki. "Typically you don't dope silicon to death, you don't try to turn it into a metal, because you have metals for that. In this case we needed it doped as much as possible without wrecking the material."

The devices were made at Sandia's Microsystems Engineering, Science and Applications Complex. The team has been issued a patent for the infrared rectenna and have filed several additional patents.

The version of the infrared rectenna the team reported in Physical Review Applied produces 8 nanowatts of power per square centimeter from a specialized heat lamp at 840 degrees. For context, a typical solar-powered calculator uses about 5 microwatts, so they would need a sheet of infrared rectennas slightly larger than a standard piece of paper to power a calculator. So, the team has many ideas for future improvements to make the infrared rectenna more efficient.

Future work to improve infrared rectenna efficiency

These ideas include making the rectenna's top pattern 2D x's instead of 1D stripes, in order to absorb infrared light over all polarizations; redesigning the rectifying layer to be a full-wave rectifier instead of the current half-wave rectifier; and making the infrared rectenna on a thinner silicon wafer to minimize power loss due to resistance.

Through improved design and greater conversion efficiency, the power output per unit area will increase. Davids thinks that within five years, the infrared rectenna may be a good alternative to RTGs for compact power supplies.

Shank said, "We need to continue to improve in order to be comparable to RTGs, but the rectennas will be useful for any application where you need something to work reliably for a long time and where you can't go in and just change the battery. However, we're not going to be an alternative for solar panels as a source of grid-scale power, at least not in the near term."

Davids added, "We've been whittling away at the problem and now we're beginning to get to the point where we're seeing relatively large gains in power conversion, and I think that there's a path forward as an alternative to thermoelectrics. It feels good to get to this point. It would be great if we could scale it up and change the world."

###

The research was funded by Sandia's Laboratory Directed Research and Development program.

Media Contact

Mollie Rappe
mrappe@sandia.gov
505-844-8220

 @SandiaLabs

http://www.sandia.gov 

Mollie Rappe | EurekAlert!
Further information:
https://share-ng.sandia.gov/news/resources/news_releases/heat_power/
http://dx.doi.org/10.1103/PhysRevApplied.9.054040

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>