Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GE Power Conversion to Supply one of the World’s Most Advanced Wind Turbine Test Facilities

15.03.2013
• Advanced Nacelle Test Bench will enable fault ride-through tests and grid simulation

• Equipment incorporates GE's innovative direct drive permanent magnet motor and flexible modular inverter system

• Contract confirms GE's reputation as a leader in drive technology for wind power and test systems

GE's Power Conversion business (NYSE: GE) has signed a turnkey contract with the Lindoe Offshore Renewables Center (LORC), a Danish center for test of renewable energy technology, for the construction, commissioning and handover of one of the world's most advanced facilities to test wind turbine nacelles with an output power of up to 10 Megawatts (MW). The Lindoe Nacelle Testing project (LNT) will be located in the Lindø Industrial Park on Funen, Denmark's fourth-largest island. It will be ready for first tests in 2014.


The Lindoe Nacelle Testing (LNT)project is one of the world’s most advanced facilities to test wind turbine nacelles with an output power of up to 10 Megawatts (MW).
(Photo: GE Power Conversion: GEPCPR152)

The function tester will incorporate GE’s drivetrain, grid simulation, control systems and foundation work. It is comprised of: medium voltage switch gear, transformers, inverter system DDPM (direct drive permanent magnet) motor, HMI (human-machine interface) and foundation. GE will carry out the installation, commissioning, and remote service for the project. The medium voltage inverter system is a further development of GE’s existing MV7000 series, and is one of the most compact medium voltage inverters on the market. The MV7000 is based on tried-and-tested GE technology using dynamic control properties and low grid interference.

“GE is extremely pleased and proud to be a partner for LORC in building an outstanding test bench that will lead the wind industry into the future of a safer supply of renewable power”, says Franz Hubl, Global Business Leader - Test Systems, at GE Power Conversion. “As a world leader in this field, we have significant experience to contribute.”

The new nacelle tester will enable LORC to test the functionality and performance of wind turbine nacelles by using a specially designed adapter that enables the turbine hub and all field operational software and hardware—including pitch control—to be included in the test. It will open up a wide range of opportunities to test wind turbine controllers inside the nacelle, using highly realistic test conditions at 33kV level, which is unique in the test system business.

“We choose to work with GE because of their extensive knowledge in the wind power industry and their worldwide references for test systems,” says Ove Poulsen, Chief Executive Officer at LORC. “GE also provided us with a technical solution that best fits the requirements for this project. Users will be able to carry out a full range of tests on their equipment without having to adapt their turbine software or hardware. Because the test bench can be connected to a “virtual” wind farm (created by separate system), it will be able to operate as HIL – Hardware in the Loop.”

The test bench has a modular design that will enable it to be adapted to future needs. For example, its grid simulator power can be increased at a later date and thereby increase its functionality to carry out extended FRT (Fault Ride Through) tests - simulations of wind turbine systems to remain connected to the supply during grid malfunctions and to help stabilize it.

LNT will be able to meet the demands for testing of tomorrow’s offshore wind turbines in a facility where national grid codes can be tested in combination with loads caused by rapidly changing wind speed conditions. Electrical malfunctions and turbine protection systems have historically led to unforeseen excessive loadings of mechanical components and thereby reduced expected life-time. At LNT it will be possible to verify the stress levels under numerous different load cases, thereby helping to improve long term reliability.

GE was helped in winning the contract by the fact that it already has worldwide references in test systems for the wind power industry, and that it was able to offer LORC a technical solution that best fits its requirement. It is alone in producing direct drive permanent magnet motors in the double-digit megawatt range suitable for wind turbines, it offers a flexible automation and visualization system, and it owns important intellectual property rights on grid simulation.

Paul Floren
GE Power Conversion
t +33 1 53 59 28 44
paul.floren@ge.com
Stephanie Bush
EMG
t +31 164 317 036
sbush@emg-pr.com

Stephanie Bush | EMG
Further information:
http://www.ge.com

More articles from Power and Electrical Engineering:

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

nachricht New safer, inexpensive way to propel small satellites
16.07.2019 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>