Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017

Many industrial processes depend on exact pressure gauges. The SOI high-pressure sensors (silicon-on-insulator) developed by the Fraunhofer Institute for Reliability and Microintegration IZM makes this exact monitoring possible for processes operating at temperatures of up to 400° centigrade. The sensor promise an exceptionally long life as well as precision and efficiency. To keep up with technological requirements, future iterations of the sensors will be designed to withstand temperatures above 600° centigrade.

The SOI sensor will mostly be used in extrusion facilities in plastic processing. The process depends on filling moulds completely with the plastic raw material. This is where the SOI comes in: It measures pressure precisely and notifies the system immediately when the injected plastic reaches a certain point.


High temperature sensor for extrusion systems: SOI chips (left) and casing (right).

Fraunhofer IZM

SOI stands for Silicon-on-Insulator and refers to a sensor encased in a layer of silicon dioxide for complete electrical insulation. The outer SOL (Silicon-Over-Layer) on top of that layer includes independent piezoresistors in the silicon membrane.

Traditional MEMS pressure sensors use the layer between the positive and negative doping – the so-called p-n transition – as insulation, allowing a current to pass in one direction only. MEMS is an acronym for Micro-Electro-Mechanical Systems and refers to miniature components that process mechanical and electrical information. By stark contrast to SOI sensors, MEMS sensors can only be used at temperatures up to around 125° centigrade.

The sensor, developed with input from the Technical University of Berlin, relies on SOI technology to work without any addition of oils or other liquids that more traditional sensors often depend on. Its obvious advantage: The sensor input is not affected by any temperature effects on that liquid. By not requiring expensive and complicated filler technologies, the SOI sensor reduces the environmental impact of the system to become a genuine alternative for a future in which oil or mercury can be expected to be banned from many products.

The accurate measurements of the sensor will also save time and material in injection molding, making it more efficient by comparison to traditional technologies. The key selling point, however, is its ability to withstand the high temperature and tough conditions that exist whenever liquid plastics are processed.

To prevent environmental effects, the SOI chip is housed in a glueless ceramic body, attached to a steel membrane that is connected with a steel cylinder. The sensor is fitted neatly in a so-called ‘floating’ design: It floats in the casing between the electrical contacts, which avoids any need for additional filler. The SOI chip is connected to the case by wire bonding.Future high-pressure sensors will operate at temperatures of 600° centigrade and beyond.

This requires a replacement for the silicon, as it becomes self-conducting at more than 400° centigrade. One candidate is silicon carbide, which retains much better electrical properties even at extreme temperatures and is already being analyzed as a potential replacement. The Fraunhofer IZM has taken the lead in applied research in high-temperature applications and is cooperating with Gefran SPA who commissioned the high-temperature sensors.

Weitere Informationen:

https://www.izm.fraunhofer.de/de/abteilungen/high_density_interconnectwaferlevel... Additional detail about sensor technology at the Fraunhofer IZM.
http://www.mdpi.com/1424-8220/15/8/20305 Scientific research paper.

Eva Baumgärtner | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>