Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety

21.06.2017

In the European Union, about 200 nuclear power plants that feed electricity into the grids are currently in operation. Extending their period of operation will require reliable technology systems for calculating the residual life of the reactor components; the safety of existing nuclear power plants thus continues to remain a relevant research topic. An EU project that will make a significant contribution to ensuring long-term safety of nuclear power plant operation has recently been acquired by researchers from the Fraunhofer Institute for Nondestructive Testing IZFP in Saarbrücken.

According to current German law, the use of nuclear energy for producing power will be discontinued by 2022. Extending the operational lifetime of existing nuclear power plants outside of Germany – including those in locations directly bordering Germany – has been accepted in many countries as a strategic goal for ensuring a sufficient supply of power in the coming decades.


Grohnde/Lower Saxony nuclear power plant

Thorsten Schier / Fotolia

Consequently, the safe operation of European nuclear power plants continues to be necessary and essential. Within the framework of a research program tendered by the European Commission and the European Atomic Energy Community (EURATOM), Fraunhofer IZFP has been awarded a lucrative EU project.

Detecting material damage in a focused and timely manner

The Fraunhofer IZFP was tasked with coordinating a consortium of a total of 10 European partners collaborating on technological solutions for testing material damage in reactor pressure vessels. "The goal of the NOMAD* research project is to develop a nondestructive evaluation system that is to be used in periodic safety reviews of the reactor pressure vessel of nuclear power plants.

Its purpose is to allow determining the location and characterizing the nature of material damage in reactor pressure vessel steels," explained Dr. Madalina Rabung, the lead responsible for this project at Fraunhofer IZFP.

The reactor pressure vessel protects our environment from radioactive radiation; inside this vessel are the fuel elements, whose radioactive radiation can result in the vessel wall embrittlement over the long term. Sudden failure of a reactor pressure vessel due to embrittlement would be disastrous for humanity and our environment.

Safe reactor pressure vessels with intelligent sensing and evaluation systems

So far, safety routines have been based on monitoring concepts in which small samples are already taken during the manufacture of the reactor pressure vessels. These small samples are then intentionally exposed to increased radioactive radiation in order to detect – in anticipation of reality – potential deterioration of the material properties.

"However, the material of a reactor pressure vessel is not always homogeneous; thus, such samples cannot be considered a solid reference for the entire pressure vessel," added Dr. Rabung. Fraunhofer IZFP will increase safety significantly by looking at the reactor pressure vessel in its entirety, evaluating it regularly and non-invasively using intelligent sensors based on ultrasound and 3MA**.

With regard to the extension of operational lifetime, NOMAD will provide additional parameters to supplement the current invasive tests. The nondestructive characterization of material properties in essential, non-replaceable nuclear power plant components such as the reactor pressure vessel can thus make a significant contribution to improving the safety and the safe long-term operation of nuclear power plants.

Partners involved

The research project, which is scheduled to last for four years and is funded with a total of almost 5 million euros, was evaluated positively by the European Commission and started on June 1, 2017. Fraunhofer IZFP's application process was financially supported by the federal state of Saarland's research funding program.

In addition to Fraunhofer IZFP, the following partners are participating in this research project: SCK•CEN Belgian Nuclear Research Centre (Belgium), VTT Technical Research Centre of Finland Ltd. (Finland), SVTI Swiss Association for Technical Inspections (Switzerland), Coventry University (Great Britain), HEPENIX Technical Service Ltd. (Hungary), Hungarian Academy of Science Centre for Energy Research (Hungary), Paul Scherrer Institut (Switzerland), Tecnatom S.A. (Spain), and Eurice GmbH (Germany).

*Nondestructive Evaluation System for the Inspection of Operation-Induced Material Degradation in Nuclear Power Plants
** Micromagnetic Multiparameter Microstructure and Stress Analysis

Weitere Informationen:

http://www.izfp.fraunhofer.de
http://www.eurice.eu

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>