Fraunhofer ISE Strengthens Research Activities for Solar Thermal Systems

The solar thermal research area at the Fraunhofer Institute for Solar Energy Systems ISE develops not only main system components like collectors, storage and heat exchangers but also works on making the systems more efficient.

A central focus of the R&D is to achieve an optimal interplay between the singular components in the system in consideration of the varying supply of solar heat and the demand for useful heat. Since July 2012, Dr. Wolfgang Kramer is head of the department “Thermal System Technology” at Fraunhofer ISE.

Solar thermal systems are used for heating potable water, for space heating in residential and commercial buildings and as a heat supply for industrial processes. They are also used to provide energy for heat engines or chillers that generate electricity or cold respectively. By adding this staff position, the largest European solar research institute recognized for its long-term success in the development of solar thermal collectors expands its activities in this branch. “Dr. Wolfgang Kramer’s expertise in the field strengthens our team. His many years of experience in the industry complement our focus on applied research excellently,” says Dr. Werner Platzer, Division Director, Solar Thermal and Optics.

The majority of all solar thermal systems are used for water heating and space heating. For agriculture, business and industry, however, process heat from large solar thermal systems is becoming more attractive. Depending on the system, operating temperatures of up to several hundred degrees Celcius can be generated. Here an enormous potential for substituting fossil fuel driven plants with solar thermal energy exists. With the addition of Dr. Wolfgang Kramer and the newly founded department “Thermal System Technology” in 2012, Fraunhofer ISE is now optimally positioned. “The institute has all the necessary components and system competence in place. These include, in particular, the areas of material science, component design and construction, fabrication processes, testing and verification procedures, theoretical modeling and simulation as well as system controls and operation for the various applications. The wide range of services we offer to our customers is unique in the field,” says Kramer about his new workplace.

About the person

The process engineer Dr. Wolfgang Kramer studied at the University of Stuttgart and Manchester. His doctoral thesis entitled “Evaporation of Mixtures on High Power Heat Exchanger Surfaces” was carried out at the Technical University Berlin at the Institute for Energy Technology. He started his professional career at Scheerle AG, an engineering company for pump technology. Afterwards, he was employed by the auto parts supplier Behr GmbH & Co. KG first as development engineer and later as department head in the advanced development for coolant chillers and intercoolers. Before he transferred to Fraunhofer ISE, Kramer worked for six years at Wagner & Co. Solartechnik GmbH, a solar systems supplier. There he first worked as a development engineer for system technology products in the area of solar thermal. Then he became the department head of “Development Solar Thermal, Pellet Technology and Photovoltaics.”

Media Contact

Karin Schneider EurekAlert!

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors