Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fraunhofer ISE Sets Two Records for the Efficiency of Silicon-Based Monolithic Triple-Junction Solar Cells


Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have once again succeeded in raising the efficiency value of monolithic triple-junction solar cells made of silicon and III-V semiconductor materials. Using a combination of multiple absorber materials, these multi-junction photovoltaic cells exploit the energy from the solar spectrum significantly better than conventional silicon solar cells. The world record for a monolithic multi-junction solar cell manufactured by wafer bonding has been increased to 34.1% and an efficiency record of 24.3% achieved for a solar cell with the III-V semiconductor layers deposited directly on the silicon.

“Monolithic multi-junction solar cells are a source of hope for the further development of the silicon solar cells dominating the field today because they can lead to significantly higher efficiency values when converting sunlight into electrical power. We believe that we can achieve efficiency values of 36%, which would substantially exceed the physical limit of 29.4% offered by a pure silicon solar cell,” explains Dr. Andreas Bett, Institute Director of Fraunhofer ISE. The high efficiency allows for more output per surface area, thus creating a savings of solar cell and module materials — an important aspect in regard to the sustainability of photovoltaics.

Triple-junction solar cells made of III-V semiconductors and silicon have the potential to take photovoltaics to a new level of efficiency.

Fraunhofer ISE

IV-characteristics of both of the new III-V semiconductor and silicon triple-junction solar cells, measured at Fraunhofer ISE CalLab PV Cells under AM1.5g standard test conditions.

Fraunhofer ISE

For the production of multi-junction photovoltaic cells, thin III-V semiconductor layers only a few micrometers thick are deposited on a silicon solar cell. In order to optimally exploit the sun’s rays, the different layers absorb light from different spectral ranges: gallium indium phosphide in the 300–660 nm range (visible light), aluminum gallium arsenide in the 600–840 nm range (near infrared light) and silicon in the 800–1200 nm range (long-wavelength light).

This enables significantly increased efficiencies compared to single-junction silicon solar cells. Like today’s conventional silicon solar cells, these cells each have a contact on the front and rear sides, which allows for easy integration in solar modules.

Bonded multi-junction photovoltaic cells: 34.1% efficiency

Already well established in microelectronics, the process of direct wafer bonding is employed for creating a monolithic multi-junction solar cell. This involves depositing the III-V layers on a gallium arsenide substrate in an initial step, after which an ion beam is used to deoxidize the surfaces in a high-vacuum chamber before they are pressed together under pressure. The atoms in the III-V semiconductor layers form a bond with the silicon, forming a single unit.

Now stacked on top of each other, the GaInP, AlGaAs and silicon sub-cells are interconnected via tunnel diodes. The GaAs substrate is subsequently removed using wet chemistry, a nanostructured rear-side contact is attached and an anti-reflection coating and a contact grid are applied to the front side.

“In contrast to earlier results, the deposition conditions were improved and a new cell structure was introduced for the uppermost sub-cell made of gallium indium phosphide which enables even better visible light conversion than before. With an efficiency of 34.1%, the cell demonstrates the immense potential of this technology,” says Dr. Frank Dimroth, Head of Department III-V Photovoltaics and Concentrator Technology at Fraunhofer ISE. The former world record ( for this cell class was 33.3% efficiency.

Multi-junction photovoltaic cell with directly deposited semiconductor layers: 24.3% efficiency

Directly depositing the III-V semiconductor layers (GaInP/GaAs) on the silicon solar cells is another method used to create multi-junction photovoltaic cells. This procedure involves considerably fewer process steps than wafer bonding and avoids the use of expensive GaAs substrates, which means it is quite advantageous in the industrial implementation of this technology.

Nonetheless, the atomic structure must be very carefully controlled to ensure that the gallium and phosphorous atoms are arranged on the correct lattice sites at the interface to the silicon material. Defects in the semiconductor layers can also have an adverse effect on the solar cells’ efficiency. “We were able to make major progress in this area — current generation in the three sub-cells is now barely affected by these defects, which has enabled us to realize 24.3% efficiency for this technology for the first time anywhere in the world,” Dr. Frank Dimroth says.

“The potential is comparable to that of the wafer-bonded cells. We’ve got our work cut out for us in the coming years in order to prove that this is the case.” In December ( 2018, Fraunhofer ISE introduced this type of solar cell with an efficiency record of 22.3%.

In heading toward the industrial mass production of monolithic multi-junction photovoltaic cells, Fraunhofer ISE researchers see challenges in particular in finding an affordable process for manufacturing the III-V semiconductor layers.

Direct growth on silicon is currently the most promising approach, but other methods are being researched where the GaAs substrates can be recycled many times over after the semiconductors are transferred to the silicon. For cost-effective solar cell production new deposition machines with higher throughput and deposition area will be required. These are all methods that researchers at ISE will pursue in the coming years.

Work on wafer-bonded solar cells is funded by the German Federal Ministry for Economic Affairs and Energy (PoTaSi project, FKz. 0324247). Work on directly grown cells, in which partners Aixtron SE, TU Ilmenau and Philipps-Universität Marburg were involved, was funded by the German Federal Ministry of Education and Research (MehrSi project, FKz. 03SF0525A).

Weitere Informationen:

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Lights, camera, action... the super-fast world of droplet dynamics
26.02.2020 | University of Leeds

nachricht Turbomachine expander offers efficient, safe strategy for heating, cooling
25.02.2020 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>