Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE Achieves New World Record for Both Sides-Contacted Silicon Solar Cells

15.09.2015

25.1 Percent Efficiency with TOPCon Technology

The Fraunhofer Institute for Solar Energy Systems ISE has set a new efficiency record for silicon solar cells. For the first time, an efficiency of 25.1 percent has been measured for a both sides-contacted silicon solar cell. Having a simple rear side contact without any patterning, this type of solar cell converts one quarter of the incident sunlight into electricity. The new concept for the solar cell rear side holds great potential for further increases in efficiency.


Fraunhofer ISE achieves new world record for both sides-contacted silicon solar cell: TOPCon technology makes 25.1 percent efficiency possible.

© Fraunhofer ISE


TEM-image (Transmission Electron Microscope) showing TOPCon structure developed at Fraunhofer ISE for both sides-contacted silicon solar cells.

© Fraunhofer ISE

This record achieved by Fraunhofer ISE is the highest efficiency achieved to date for both sides-contacted silicon solar cells, characterized by having metal contacts on both the front and rear sides. This solar cell at 25.1 percent efficiency features a novel concept, namely a full-area passivated back contact.

“To improve the solar cell efficiency, the focus has been on increasingly complex solar cell structures up to now,” explains Dr. Martin Hermle, Head of the High Efficiency Solar Cells department at Fraunhofer ISE. “The biggest advantage of our new concept is that we can now contact the entire rear cell surface without patterning. Compared to the high-efficiency solar cell structures presently in use, we offer both a simplified manufacturing process and higher efficiencies at the same time,” says Hermle.

With the so-called TOPCon (Tunnel Oxide Passivated Contact) technology, developed by Fraunhofer ISE, metal contacts are applied to the rear side without patterning. To achieve this, the Fraunhofer researchers developed a selective passivated contact made of tunnel oxide that enables majority charge carriers to pass and prevents the minority carriers from recombining.

The thickness of the intermediate passivation layer is reduced to one or two nanometers, allowing the charge carriers to “tunnel” through it. Subsequently, a thin coating of highly doped silicon is deposited over the entire layer of ultra-thin tunnel oxide. This novel combination of layers allows electrical current to flow out of the cell with nearly zero loss.

In the photovoltaics industry, the majority of solar cells have an aluminum-alloyed back contact covering the entire rear side. This type of contact, however, limits the efficiency. Therefore, the industry currently retrofits their production to incorporate the PERC (Passivated Emitter Rear Cell) technology in order to increase the solar cell efficiency.

With PERC technology, only a small area on the rear side is contacted in order to reduce recombination. PERC, however, requires additional patterning steps and leads to longer current conduction paths in the silicon wafer. TOPCon, on the other hand, offers a possible approach to reduce these loss mechanisms and increase the efficiency.

“With TOPCon, we have developed a pioneering technology to increase the efficiency of silicon solar cells,” says Prof. Stefan Glunz, Division Director of Solar Cells – Development and Characterization. “At 25.1% efficiency, we are the first research institute to cross the 25 percent mark with an evolutionary further development for both sides-contacted solar cells and to close the gap on the world record efficiency for back contacted solar cells,” adds Glunz.

The team of Dr. Martin Hermle has been working on the TOPCon concept for about three years. The scientists in the team have succeeded in continually increasing the solar cell efficiency using this technology. With their latest result, they have surpassed the 25 percent mark. The research was funded within the project FORTES from the German Federal Ministry for Economic Affairs and Energy and U.S. Department of Energy, Energy Efficiency and Renewable Energy Program, under Award Number DE-EE0006336.

EU PVSEC: Come hear our presentation on this topic!

On Tuesday, September 15, 2015, Prof. Stefan Glunz, Division Director of “Solar Cells – Development and Characterization” will hold a plenary talk on this topic at the European Photovoltaic Conference (EU PVSEC) in Hamburg. The title of the talk is “The Irresistible Charm of a Simple Current Flow Pattern – Approaching 25 % with a Solar Cell Featuring a Full-Area Back Contact” (Plenary Session 2BP.1 from 10:30-12:10 a.m.)

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>