Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Flying fish" robot can dive and fly

12.09.2019

A bio-inspired bot uses water from the environment to create a propelling gas and launch itself from the water’s surface. The robot had been developed by researchers at Imperial College London. It can travel 26 meters through the air after take-off and could be used to collect water samples in hazardous and cluttered environments, such as during flooding or when monitoring ocean pollution, report the team lead by Mirko Kovac, who also heads the joint "Materials and Technology Center of Robotics" at Empa, in the latest issue of "Science Robotics".

Robots that can transition from water to air are desirable in certain situations, but the launch requires a lot of power, which has been difficult to achieve in small robots.


Bild: Aerial Robotics Lab/Imperial College London

Now, researchers at Imperial College London have invented a system that requires just 0.2 grams of calcium carbide powder in a combustion chamber. The only moving part is a small pump that brings in water from the environment the robot is sat in, such as a lake or ocean.

The water is then combined with the calcium-carbide powder in a reaction chamber, producing a burnable acetylene gas. As the gas ignites and expands, it pushes the water out as a jet propelling the robot clear of the water and into a glide of up to 26 meters.

“Water-to-air transition is a power-intensive process, which is difficult to achieve on a small-scale flying vehicle that needs to be lightweight for flight", explains Mirko Kovac, Director of the "Aerial Robotics Laboratory" at Imperial and the joint "Materials and Technology Center of Robotics" at Empa.

“We have used water-reactive chemicals to reduce the materials that the robot needs to carry. Since the chamber fills passively and the environmental water acts as a piston, we can create a full combustion cycle with only one moving part, which is the pump that mixes the water with the fuel.”

A lot of thrust

The team tested the robot in the lab, in a lake, and in a wave tank, showing that it can escape from the water’s surface even under rather rough conditions. While similar robots often require calm conditions to leap from the water, the team’s invention generates a force 25 times the robot’s weight, giving it a greater chance of overcoming the waves.

The robot, which weighs just 160 grams, can "jump" multiple times after refilling its water tank. This could allow it to float on water and take samples at multiple points without additional power, saving energy over longer distances compared to an electrically powered robot.

The Imperial team is now working with researchers at Empa to build new vehicles using advanced materials and begin field trials of the robot in a range of environments, including monitoring the oceans around coral reefs and offshore energy platforms.

Raphael Zufferey, first author on the paper said: “These kinds of low-power, tether-free robots could be really useful in environments that are normally time- and resource-intensive to monitor, including after disasters such as floods or nuclear accidents.”

The tests were carried out in the Brahmal Vasudevan Multi-terrain Robotics Arena, which was founded on a philanthropic gift from Brahmal Vasudevan.

Wissenschaftliche Ansprechpartner:

Dr. Mirko Kovac
Empa, Materials and Technology Center of Robotics
Phone +41 58 765 46 89
mirko.kovac@empa.ch

Originalpublikation:

R Zufferey, A Ortega Ancel, A Farinha, R Siddall, SF Armanini, M Nasr, RV Brahmal, G Kennedy, M Kovac; Consecutive aquatic jump-gliding with a water-reactive fuel; Science Robotics; doi: 10.1126/scirobotics.aax7330

Video: ‘Flying fish’ robot can propel itself out of water and glide through the air

https://www.youtube.com/watch?v=aJU8EL61NgA

Weitere Informationen:

https://www.empa.ch/web/s604/aerial-robotics

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE’s PV-TEC Pioneers New Technologies and Improves Solar Cell Efficiency
12.09.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht World record for tandem perovskite-CIGS solar cell
09.09.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

Im Focus: A molecular 'atlas' of animal development

Researchers from the University of Pennsylvania provide a molecular map of every cell in a developing animal embryo

In a paper in Science this week, Penn researchers report the first detailed molecular characterization of how every cell changes during animal embryonic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Turbo-charging pharmaceutical biotechnology simulations

12.09.2019 | Life Sciences

"Flying fish" robot can dive and fly

12.09.2019 | Power and Electrical Engineering

Form is function

12.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>