Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Flying fish" robot can dive and fly

12.09.2019

A bio-inspired bot uses water from the environment to create a propelling gas and launch itself from the water’s surface. The robot had been developed by researchers at Imperial College London. It can travel 26 meters through the air after take-off and could be used to collect water samples in hazardous and cluttered environments, such as during flooding or when monitoring ocean pollution, report the team lead by Mirko Kovac, who also heads the joint "Materials and Technology Center of Robotics" at Empa, in the latest issue of "Science Robotics".

Robots that can transition from water to air are desirable in certain situations, but the launch requires a lot of power, which has been difficult to achieve in small robots.


Bild: Aerial Robotics Lab/Imperial College London

Now, researchers at Imperial College London have invented a system that requires just 0.2 grams of calcium carbide powder in a combustion chamber. The only moving part is a small pump that brings in water from the environment the robot is sat in, such as a lake or ocean.

The water is then combined with the calcium-carbide powder in a reaction chamber, producing a burnable acetylene gas. As the gas ignites and expands, it pushes the water out as a jet propelling the robot clear of the water and into a glide of up to 26 meters.

“Water-to-air transition is a power-intensive process, which is difficult to achieve on a small-scale flying vehicle that needs to be lightweight for flight", explains Mirko Kovac, Director of the "Aerial Robotics Laboratory" at Imperial and the joint "Materials and Technology Center of Robotics" at Empa.

“We have used water-reactive chemicals to reduce the materials that the robot needs to carry. Since the chamber fills passively and the environmental water acts as a piston, we can create a full combustion cycle with only one moving part, which is the pump that mixes the water with the fuel.”

A lot of thrust

The team tested the robot in the lab, in a lake, and in a wave tank, showing that it can escape from the water’s surface even under rather rough conditions. While similar robots often require calm conditions to leap from the water, the team’s invention generates a force 25 times the robot’s weight, giving it a greater chance of overcoming the waves.

The robot, which weighs just 160 grams, can "jump" multiple times after refilling its water tank. This could allow it to float on water and take samples at multiple points without additional power, saving energy over longer distances compared to an electrically powered robot.

The Imperial team is now working with researchers at Empa to build new vehicles using advanced materials and begin field trials of the robot in a range of environments, including monitoring the oceans around coral reefs and offshore energy platforms.

Raphael Zufferey, first author on the paper said: “These kinds of low-power, tether-free robots could be really useful in environments that are normally time- and resource-intensive to monitor, including after disasters such as floods or nuclear accidents.”

The tests were carried out in the Brahmal Vasudevan Multi-terrain Robotics Arena, which was founded on a philanthropic gift from Brahmal Vasudevan.

Wissenschaftliche Ansprechpartner:

Dr. Mirko Kovac
Empa, Materials and Technology Center of Robotics
Phone +41 58 765 46 89
mirko.kovac@empa.ch

Originalpublikation:

R Zufferey, A Ortega Ancel, A Farinha, R Siddall, SF Armanini, M Nasr, RV Brahmal, G Kennedy, M Kovac; Consecutive aquatic jump-gliding with a water-reactive fuel; Science Robotics; doi: 10.1126/scirobotics.aax7330

Video: ‘Flying fish’ robot can propel itself out of water and glide through the air

https://www.youtube.com/watch?v=aJU8EL61NgA

Weitere Informationen:

https://www.empa.ch/web/s604/aerial-robotics

Cornelia Zogg | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Power and Electrical Engineering:

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

nachricht Diamonds in your devices: Powering the next generation of energy storage
05.12.2019 | Tokyo University of Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>