Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Floating in Space – with Fraunhofer 3D Sound at Zeiss Planetarium Jena

01.11.2011
From now on, visitors of the Zeiss Planetarium in Jena can go on an acoustic and visual journey like no man went before: With "SpatialSound Wave" the scientists of the Ilmenau Fraunhofer Institute for Digital Media Technology IDMT create an outstanding spatial sound event in a dome theater.

It is the first fixed installation of this Fraunhofer 3D sound system. The combination with the newly installed full-dome projection system of Carl Zeiss AG creates impressive 3D worlds for eyes and ears. On November 3rd, 2011, the innovative image and sound concept of the Zeiss Planetarium is going to be introduced to the public.

The Fraunhofer sound solution creates a naturally immersive sound environment absorbing the audience into a world of musical-acoustic effects. The listeners experience the scenes in outstanding quality on every seat. SpatialSound Wave is based on Wave Field Synthesis. With the integration of the innovative sound system in Jena it is the first time such a fixed installation like this has been set up in a planetarium.

For the audience in the Jena dome theater, this Fraunhofer technology opens up totally new opportunities: Apart from a natural nightlife sound scenery, the audience experiences most diversified music highlights and thrilling audio drama. René Rodigast, responsible for the project at Fraunhofer IDMT, describes the advantages of this new 3D audio system: "Our SpatialSound Wave system could be easily integrated in the existing sound solutions of the planetarium. In order to do so, 60 loudspeakers that are controlled by our audio system, have been integrated inside the dome as well as horizontally around the audience. This way, sound sources – a speaker, FX sounds or musical effects – can be positioned freely in the dome theater and arranged as 3D audio shows".

In addition to SpatialSound Wave, this planetarium also uses state-of-the-art projection technology by Carl Zeiss AG. Their digital full-dome projection system "powerdome®VELVET" featuring highest contrast, allows video projection of any content across the whole planetarium dome. It completes the classic, opto-mechanical star projection technology of the "Universarium" projector. In addition to purely astronomic presentations, the digital ZEISS technology allows crisp video projections with 3D effects on a pitch-black background.

The three-dimensional experience for eyes and ears is created by an interface between the SpatialSound Wave and the powerdome®VELVET systems. This way, audio and video content is synchronized. On a projection area of 900sqm, the audience goes on an acoustic and visual space flight.

"We are proud to be one of the most state-of-the-art planetariums worldwide – thanks to innovative technologies from Thuringia. The novel effects enrich our education and entertainment program and make discovering the stars a real multimedia experience", says Jürgen Hellwig, Managing Director of STERNEVENT GmbH, the operating company of the Zeiss Planetarium in Jena.

The new concept will be introduced on November 3rd, 2011, at 11 a.m. on a press conference in the Zeiss Planetarium Jena. From 7 p.m., the technical novelties will be presented in an evening ceremony.

Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau conducts applied research in the field of digital media and works on leading projects and topics in the field of audio-visual applications.

Besides sound solutions for home and professional users (e.g. IOSONO® Wave Field Synthesis technology) software technologies for analysis and characterization of multimedia content as well as audio-visual applications for medical engineering are being developed. Furthermore interactive AV applications for entertainment and knowledge management and the design of architectures for digital online-distribution are in the institute’s research focus.

The Fraunhofer IDMT realizes innovative scientific results through prototypes and applicable solutions which come up to customer and market requirements in close cooperation with partners in economy, culture and science.

Since 2008, Fraunhofer IDMT has two new branch labs. The department Children’s Media, based in Erfurt, works on the development of innovative computer based program and edutainment formats for children and adolescents. The new project group Hearing, Speech and Audio Technology, based in Oldenburg, researches topics of audio system technology concerning the fields of health, transportation, multimedia and telecommunication.

Contact Person:
Stefanie Theiß
Press and Public Relations
Fraunhofer Institute for Digital Media Technology IDMT
Ehrenbergstraße 31
98693 Ilmenau, Germany
Phone: +49 (0) 36 77/4 67-3 11
Fax: +49 (0) 36 77/4 67-4 67
stefanie.theiss@idmt.fraunhofer.de

Stefanie Theiß | Fraunhofer-Institut
Further information:
http://www.idmt.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>