Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Floating in Space – with Fraunhofer 3D Sound at Zeiss Planetarium Jena

01.11.2011
From now on, visitors of the Zeiss Planetarium in Jena can go on an acoustic and visual journey like no man went before: With "SpatialSound Wave" the scientists of the Ilmenau Fraunhofer Institute for Digital Media Technology IDMT create an outstanding spatial sound event in a dome theater.

It is the first fixed installation of this Fraunhofer 3D sound system. The combination with the newly installed full-dome projection system of Carl Zeiss AG creates impressive 3D worlds for eyes and ears. On November 3rd, 2011, the innovative image and sound concept of the Zeiss Planetarium is going to be introduced to the public.

The Fraunhofer sound solution creates a naturally immersive sound environment absorbing the audience into a world of musical-acoustic effects. The listeners experience the scenes in outstanding quality on every seat. SpatialSound Wave is based on Wave Field Synthesis. With the integration of the innovative sound system in Jena it is the first time such a fixed installation like this has been set up in a planetarium.

For the audience in the Jena dome theater, this Fraunhofer technology opens up totally new opportunities: Apart from a natural nightlife sound scenery, the audience experiences most diversified music highlights and thrilling audio drama. René Rodigast, responsible for the project at Fraunhofer IDMT, describes the advantages of this new 3D audio system: "Our SpatialSound Wave system could be easily integrated in the existing sound solutions of the planetarium. In order to do so, 60 loudspeakers that are controlled by our audio system, have been integrated inside the dome as well as horizontally around the audience. This way, sound sources – a speaker, FX sounds or musical effects – can be positioned freely in the dome theater and arranged as 3D audio shows".

In addition to SpatialSound Wave, this planetarium also uses state-of-the-art projection technology by Carl Zeiss AG. Their digital full-dome projection system "powerdome®VELVET" featuring highest contrast, allows video projection of any content across the whole planetarium dome. It completes the classic, opto-mechanical star projection technology of the "Universarium" projector. In addition to purely astronomic presentations, the digital ZEISS technology allows crisp video projections with 3D effects on a pitch-black background.

The three-dimensional experience for eyes and ears is created by an interface between the SpatialSound Wave and the powerdome®VELVET systems. This way, audio and video content is synchronized. On a projection area of 900sqm, the audience goes on an acoustic and visual space flight.

"We are proud to be one of the most state-of-the-art planetariums worldwide – thanks to innovative technologies from Thuringia. The novel effects enrich our education and entertainment program and make discovering the stars a real multimedia experience", says Jürgen Hellwig, Managing Director of STERNEVENT GmbH, the operating company of the Zeiss Planetarium in Jena.

The new concept will be introduced on November 3rd, 2011, at 11 a.m. on a press conference in the Zeiss Planetarium Jena. From 7 p.m., the technical novelties will be presented in an evening ceremony.

Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau conducts applied research in the field of digital media and works on leading projects and topics in the field of audio-visual applications.

Besides sound solutions for home and professional users (e.g. IOSONO® Wave Field Synthesis technology) software technologies for analysis and characterization of multimedia content as well as audio-visual applications for medical engineering are being developed. Furthermore interactive AV applications for entertainment and knowledge management and the design of architectures for digital online-distribution are in the institute’s research focus.

The Fraunhofer IDMT realizes innovative scientific results through prototypes and applicable solutions which come up to customer and market requirements in close cooperation with partners in economy, culture and science.

Since 2008, Fraunhofer IDMT has two new branch labs. The department Children’s Media, based in Erfurt, works on the development of innovative computer based program and edutainment formats for children and adolescents. The new project group Hearing, Speech and Audio Technology, based in Oldenburg, researches topics of audio system technology concerning the fields of health, transportation, multimedia and telecommunication.

Contact Person:
Stefanie Theiß
Press and Public Relations
Fraunhofer Institute for Digital Media Technology IDMT
Ehrenbergstraße 31
98693 Ilmenau, Germany
Phone: +49 (0) 36 77/4 67-3 11
Fax: +49 (0) 36 77/4 67-4 67
stefanie.theiss@idmt.fraunhofer.de

Stefanie Theiß | Fraunhofer-Institut
Further information:
http://www.idmt.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>