Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Finnish technology research facing the most challenging fusion energy project

29.01.2009
Remote maintenance systems for ITER to be developed in Finland

Fusion is a promising option for a large scale energy production for the second half of this century and beyond. Fusion has practically unlimited fuel resources, and it is safe and environmentally sound.

The global ITER-test power plant project can be seen as one of the most challenging energy projects of mankind and Europe has a significant role in it. VTT Technical Research Centre of Finland and Tampere University of Technology (TUT) are responsible for developing the maintenance of the critical parts of the fusion plant that is been built in Europe (France). A full-scale research platform to develop and test the maintenance robot and remote handling operations for ITER will be taken into use on January 29 in Finland.

ITER-test power plant project is a significant step toward the development of fusion energy. The development project stretching over decades aims to prove the scientific and technological feasibility of fusion. If successful, the project proves fusion to be a true alternative energy source of the future. In addition to EU and Switzerland, India, Japan, China, South-Korea, Russia, and United States are also ITER Parties. Each Party has its own significant fusion programme but the international ITER is the most important and first priority project and proves that global collaboration can be done. European contributions to ITER are managed and contracted by the new Joint Undertaking “Fusion for Energy” established in Barcelona.

The EU owned and VTT hosted ITER remote handling system’s research and development environment, is an important milestone and appreciation for Finnish expertise. The development of the he remote handling system is one of the most significant development projects within the Tekes funded fusion areas, where virtual simulation and modelling know-how are forwarded for the utilization of the industry. As a result of hard international competition the DTP2 research environment was chosen to be part of VTT and Tampere University of Technology international Remote Operation and Virtual Reality Centre ROViR. The DTP2 facility and projects related are funded mainly by Fusion for Energy and Tekes.

Remote operation and virtual reality have a core role in the maintenance of ITER reactor as they have numerous application possibilities that they can also offer to the industry. ITER enables among others the possibility to build the machine, planning of the conventional power plants as well as development of maintenance. The goal is to implement top research results of the energy project through ROViR for the use of companies to enhance competitiveness and productivity.

”The development of fusion reactor creates new expertise in Finland that accelerates the productivity and competitiveness of Finnish industries. This is also one way of ensuring that top research and R&D that benefits the industry will stay in Finland in future as well,’’ says VTT President and CEO Erkki KM Leppävuori.

Fusion for Energy (F4E) is the European Union’s organisation responsible for providing Europe’s contribution to ITER. F4E also supports fusion R&D initiatives through the Broader Approach Agreement, a pact on fusion energy partnership which lasts for 10 years and represents about € 340m of European investment signed with Japan. Ultimately F4E will contribute towards the construction of demonstration fusion reactors. F4E was created on 27 March 2007 for a period of 35 years and will manage a budget of around 4 billion Euros for the first ten years. Its seat is in Barcelona.

Didier Gambier, Director of Fusion for Energy, says that the DTP2 is a concrete example of successful cooperation between Fusion for Energy, European laboratories and industrial partners. “This facility is ideal for training and knowledge transmission because it brings together a combination of technologies relevant to the ITER experiment. The know how we have acquired will stimulate spin offs in different innovation areas“.

The building expenses of the Global ITER fusion reactor project have been estimated to be higher than as € 5 billion over the next ten years. Europe has a significant role in the ITER project and EU will cover 45% of the building costs of the test plant. The construction work of the 500 MW test plant is already under progress in Cadarches South of France.


Additional information:

VTT Technical Research Centre of Finland
Principal Project Leader of Divertor Test Platform Facility, DTP2
Senior Research Scientist Mikko Siuko
tel. +358 40 8490 243
mikko.siuko@vtt.fi

Seppo Karttunen
Chief Research Scientist (Fusion energy)
Tel. +358 20 822 5069
seppo.karttunen@vtt.fi

Further information on VTT:

Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Olli Ernvall | VTT
Further information:
http://www.vtt.fi/uutta/2009/090129.jsp?lang=en
http://www.vtt.fi/?lang=en

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>