Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Figuring Out Flow Dynamics

01.08.2013
Engineers gain insight into turbulence formation and evolution in fluids

Turbulence is all around us—in the patterns that natural gas makes as it swirls through a transcontinental pipeline or in the drag that occurs as a plane soars through the sky.


Turbulence structure gets more complicated as an increasing number of modes are added together.
Credit: Caltech / McKeon Lab

Reducing such turbulence on say, an airplane wing, would cut down on the amount of power the plane has to put out just to get through the air, thereby saving fuel. But in order to reduce turbulence—a very complicated phenomenon—you need to understand it, a task that has proven to be quite a challenge.

Since 2006, Beverley McKeon, professor of aeronautics and associate director of the Graduate Aerospace Laboratories at the California Institute of Technology (Caltech) and collaborator Ati Sharma, a senior lecturer in aerodynamics and flight mechanics at the University of Southampton in the U.K., have been working together to build models of turbulent flow. Recently, they developed a new and improved way of looking at the composition of turbulence near walls, the type of flow that dominates our everyday life.

Their research could lead to significant fuel savings, as a large amount of energy is consumed by ships and planes, for example, to counteract turbulence-induced drag. Finding a way to reduce that turbulence by 30 percent would save the global economy billions of dollars in fuel costs and associated emissions annually, says McKeon, a coauthor of a study describing the new method published online in the Journal of Fluid Mechanics on July 8.

"This kind of turbulence is responsible for a large amount of the fuel that is burned to move humans, freight, and fluids such as water, oil, and natural gas, around the world," she says. "[Caltech physicist Richard] Feynman described turbulence as 'one of the last unsolved problems of classical physics,' so it is also a major academic challenge."

Wall turbulence develops when fluids—liquid or gas—flow past solid surfaces at anything but the slowest flow rates. Progress in understanding and controlling wall turbulence has been somewhat incremental because of the massive range of scales of motion involved—from the width of a human hair to the height of a multi-floor building in relative terms—says McKeon, who has been studying turbulence for 16 years. Her latest work, however, now provides a way of analyzing a large-scale flow by breaking it down into discrete, more easily analyzed bits.

McKeon and Sharma devised a new method of looking at wall turbulence by reformulating the equations that govern the motion of fluids—called the Navier-Stokes equations—into an infinite set of smaller, simpler subequations, or "blocks," with the characteristic that they can be simply added together to introduce more complexity and eventually get back to the full equations. But the benefit comes in what can be learned without needing the complexity of the full equations. Calling the results from analysis of each one of those blocks a "response mode," the researchers have shown that commonly observed features of wall turbulence can be explained by superposing, or adding together, a very small number of these response modes, even as few as three.

In 2010, McKeon and Sharma showed that analysis of these blocks can be used to reproduce some of the characteristics of the velocity field, like the tendency of wall turbulence to favor eddies of certain sizes and distributions. Now, the researchers also are using the method to capture coherent vortical structure, caused by the interaction of distinct, horseshoe-shaped spinning motions that occur in turbulent flow. Increasing the number of blocks included in an analysis increases the complexity with which the vortices are woven together, McKeon says. With very few blocks, things look a lot like the results of an extremely expensive, real-flow simulation or a full laboratory experiment, she says, but the mathematics are simple enough to be performed, mode-by-mode, on a laptop computer.

"We now have a low-cost way of looking at the 'skeleton' of wall turbulence," says McKeon, explaining that similar previous experiments required the use of a supercomputer. "It was surprising to find that turbulence condenses to these essential building blocks so easily. It's almost like discovering a lens that you can use to focus in on particular patterns in turbulence."

Using this lens helps to reduce the complexity of what the engineers are trying to understand, giving them a template that can be used to try to visually—and mathematically—identify order from flows that may appear to be chaotic, she says. Scientists had proposed the existence of some of the patterns based on observations of real flows; using the new technique, these patterns now can be derived mathematically from the governing equations, allowing researchers to verify previous models of how turbulence works and improve upon those ideas.

Understanding how the formulation can capture the skeleton of turbulence, McKeon says, will allow the researchers to modify turbulence in order to control flow and, for example, reduce drag or noise.

"Imagine being able to shape not just an aircraft wing but the characteristics of the turbulence in the flow over it to optimize aircraft performance," she says. "It opens the doors for entirely new capabilities in vehicle performance that may reduce the consumption of even renewable or non-fossil fuels."

Funding for the research outlined in the Journal of Fluid Mechanics paper, titled "On coherent structure in wall turbulence," was provided by the Air Force Office of Scientific Research. The paper is the subject of a "Focus on Fluids" feature article that will appear in an upcoming print issue of the same journal and was written by Joseph Klewicki of the University of New Hampshire.

Written by Katie Neith

Contact:
Brian Bell
(626) 395-5832
mr@caltech.edu

Brian Bell | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>