Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failures in power grids: Dynamically induced cascades

25.05.2018

A reliable functioning of technical infrastructure networks is essential for our modern, high-tech society. Cascading failures, i.e. chain reactions of failures of different infrastructures, are the cause of many failures of entire networks, e.g. large parts of the European power grids. Although cascading failures are usually influenced by network-wide nonlinear dynamics between the individual failures, their modelling has so far concentrated primarily on the analysis of sequences of failure events of individual infrastructures - however, the dynamics between these events have not been taken into account.

In an article now published by Nature Communications, an analysis scheme is presented which takes into account the event-based character of the chain reaction as well as the specific network dynamic influences.


Power Grid Dynamical Cascades

Timme

The international team of scientists from the Center for Advancing Electronics Dresden (cfaed) at TU Dresden and the Max Planck Institute for Dynamics and Self-Organization in Göttingen (Prof. Marc Timme, Dr. Benjamin Schäfer), the Forschungszentrum Jülich (Jun.-Prof. Dr. Dirk Witthaut) and the Queen Mary University of London (Prof. Vito Latora) was able to find out that some transition processes between different states of the power grid take place on a time scale of a few seconds.

"These can play a decisive role in the development of collective reactions, which can eventually lead to a ‘blackout.’ In our study we propose a prediction method to identify potentially endangered lines and network components already at the planning stage and, if appropriate, also during the operation of power networks.

Such dynamic effects could be integrated into network operators' risk assessments and system planning. Overall, our results underline the importance of dynamically induced failures for the adjustment processes of the national power grids of various European countries," says Prof. Marc Timme from the Strategic Chair of Network Dynamics at TU Dresden.

Major power outages, which often affect millions of people, are caused by complex and often non-local interactions between many components. In Europe, for example, the planned shutdown of a line in 2006 led to the failure of large parts of the European grid and affected up to 120 million people. Such unfavorable chain reactions can already build up by switching off a single line in the network. In an advanced stage, a fast dynamic develops, that is based, in particular, on the automatic switch-off devices, which are actually supposed to ensure the safety of the network.

This rapid dynamic was the focus of the research of the team of scientists. Professor Dirk Witthaut from Forschungszentrum Jülich explains the reasons: "In recent years, the trend in the electricity sector has continued towards strong networking, the countries are very closely integrated into the European grid. Since such failures anywhere in this network could affect us at any time, we must understand the causes. That's why we were concerned with these questions: Can we understand how these fast processes work? Can we predict which lines could cause a large-scale power outage?"

"The basic idea behind the security architecture of the power grids is this: If any part of the grid fails, then the power grid should continue to function. The network then takes on a new stable state in order to compensate for the defect. The question of what this state looks like when the network has enough time to find it has already been investigated many times. For the relatively short time scale of the error cascades in power grids, however, our current study is virtually pioneering," says Vito Latora, Professor of Applied Mathematics and Head of the Complex Systems and Networks Group at Queen Mary University of London.

The scientists investigated the error cascades using a combination of computer simulations and mathematical analyses of simple network models. The static approach was compared with the new dynamic approach using a simulated network in which specific connections are interrupted. Often the broader dynamic view shows that the network can become completely unstable, even if the static approach still predicts stability.

Overall, more potential failures are detected and the potential extent of a failure is more accurately predicted. In order to compare the processes found on the model with reality, power line networks with real connection structures were examined, specifically the Spanish, British and French topology. The new analysis method was successfully applied to complex and more realistic networks.

In addition, statistical studies on failures were carried out using the dynamic approach. How many lines fail if a random line is affected? "In many cases the effects are small, i.e. hardly any other lines fail. At the same time, there are a few critical lines that lead to major failures. Taking into consideration possible attacks (physical or virtual, e.g. by hackers) it is extremely important to identify and relieve such critical lines. Therefore, using the dynamic approach, we have developed a tool that predicts which lines are critical," describes Dr. Benjamin Schäfer from cfaed at TU Dresden.

Finally, initial investigations on the spread of cascades in the network were carried out. "Instead of purely geographical distances between different locations, we consider the so-called 'effective distance,’ which takes into account how strongly different parts of the power grid can influence each other. However, in order to gain a better understanding, further research is necessary to examine the possibility of stopping such cascades," explains Schäfer.

Paper: „Dynamically induced cascading failures in power grids”; Benjamin Schäfer, Dirk Witthaut, Marc Timme & Vito Latora; Nature Communications; published 17 May 2018; Open Access
DOI: 10.1038/s41467-018-04287-5
www.doi.org/10.1038/s41467-018-04287-5

Press Pictures:
Fig. 1: https://bit.ly/2x6Jxnm
Fig. 5: https://bit.ly/2GPgswE
Movie (*.gif version): https://bit.ly/2II3LcD
Movie (*.flv version): https://bit.ly/2s9XGdL
Video Caption: The movie illustrates the cascading dynamics for the five-node network discussed in Fig. 1 with two generators and three consumers. On the left, it displays the network with the edges indicating the instantaneous load (color coded). On the right, it shows the flows on each line. If the flow of a line exceeds the threshold, the respective line 'fails' and is removed from the network in the simulation.

Media inquiries:

TU Dresden, Center for Advancing Electronics Dresden:
Prof. Marc Timme
Strategic Chair for Network Dynamics
Tel.: +49 (0)351 463-33846
E-mail: marc.timme@tu-dresden.de

Matthias Hahndorf
Head of Communications
Phone: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de

Forschungszentrum Jülich, Institute for Energy and Climate Research, Systems Analysis and Technology Evaluation:
Jun.-Prof. Dirk Witthaut
Assistant Professorship Physics of Complex Supply Networks (Universität Köln, Institute for Theoretical Physics)
E-mail: d.witthaut@fz-juelich.de

Dr. Regine Panknin
Press Officer
Tel.: +49 (0) 2461 61-9054
E-mail: r.panknin@fz-juelich.de

Queen Mary University of London, School of Mathematical Sciences:
Vito Latora
Professor of Applied Mathematics, Chair of Complex Systems
Tel.: +44 (0) 20 7882 5199
E-mail: v.latora@qmul.ac.uk

Rupert Marquand
Public Relations Officer
Tel: +44 (0) 20 7882 3004
E-Mail: r.marquand@qmul.ac.uk

Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen:
Carolin Hoffrogge
Press Officer
Tel.: +49 (0) 551/5176-668
E-Mail: presse@ds.mpg.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Further reports about: Forschungszentrum Jülich networks power grid

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>