Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failures in power grids: Dynamically induced cascades

25.05.2018

A reliable functioning of technical infrastructure networks is essential for our modern, high-tech society. Cascading failures, i.e. chain reactions of failures of different infrastructures, are the cause of many failures of entire networks, e.g. large parts of the European power grids. Although cascading failures are usually influenced by network-wide nonlinear dynamics between the individual failures, their modelling has so far concentrated primarily on the analysis of sequences of failure events of individual infrastructures - however, the dynamics between these events have not been taken into account.

In an article now published by Nature Communications, an analysis scheme is presented which takes into account the event-based character of the chain reaction as well as the specific network dynamic influences.


Power Grid Dynamical Cascades

Timme

The international team of scientists from the Center for Advancing Electronics Dresden (cfaed) at TU Dresden and the Max Planck Institute for Dynamics and Self-Organization in Göttingen (Prof. Marc Timme, Dr. Benjamin Schäfer), the Forschungszentrum Jülich (Jun.-Prof. Dr. Dirk Witthaut) and the Queen Mary University of London (Prof. Vito Latora) was able to find out that some transition processes between different states of the power grid take place on a time scale of a few seconds.

"These can play a decisive role in the development of collective reactions, which can eventually lead to a ‘blackout.’ In our study we propose a prediction method to identify potentially endangered lines and network components already at the planning stage and, if appropriate, also during the operation of power networks.

Such dynamic effects could be integrated into network operators' risk assessments and system planning. Overall, our results underline the importance of dynamically induced failures for the adjustment processes of the national power grids of various European countries," says Prof. Marc Timme from the Strategic Chair of Network Dynamics at TU Dresden.

Major power outages, which often affect millions of people, are caused by complex and often non-local interactions between many components. In Europe, for example, the planned shutdown of a line in 2006 led to the failure of large parts of the European grid and affected up to 120 million people. Such unfavorable chain reactions can already build up by switching off a single line in the network. In an advanced stage, a fast dynamic develops, that is based, in particular, on the automatic switch-off devices, which are actually supposed to ensure the safety of the network.

This rapid dynamic was the focus of the research of the team of scientists. Professor Dirk Witthaut from Forschungszentrum Jülich explains the reasons: "In recent years, the trend in the electricity sector has continued towards strong networking, the countries are very closely integrated into the European grid. Since such failures anywhere in this network could affect us at any time, we must understand the causes. That's why we were concerned with these questions: Can we understand how these fast processes work? Can we predict which lines could cause a large-scale power outage?"

"The basic idea behind the security architecture of the power grids is this: If any part of the grid fails, then the power grid should continue to function. The network then takes on a new stable state in order to compensate for the defect. The question of what this state looks like when the network has enough time to find it has already been investigated many times. For the relatively short time scale of the error cascades in power grids, however, our current study is virtually pioneering," says Vito Latora, Professor of Applied Mathematics and Head of the Complex Systems and Networks Group at Queen Mary University of London.

The scientists investigated the error cascades using a combination of computer simulations and mathematical analyses of simple network models. The static approach was compared with the new dynamic approach using a simulated network in which specific connections are interrupted. Often the broader dynamic view shows that the network can become completely unstable, even if the static approach still predicts stability.

Overall, more potential failures are detected and the potential extent of a failure is more accurately predicted. In order to compare the processes found on the model with reality, power line networks with real connection structures were examined, specifically the Spanish, British and French topology. The new analysis method was successfully applied to complex and more realistic networks.

In addition, statistical studies on failures were carried out using the dynamic approach. How many lines fail if a random line is affected? "In many cases the effects are small, i.e. hardly any other lines fail. At the same time, there are a few critical lines that lead to major failures. Taking into consideration possible attacks (physical or virtual, e.g. by hackers) it is extremely important to identify and relieve such critical lines. Therefore, using the dynamic approach, we have developed a tool that predicts which lines are critical," describes Dr. Benjamin Schäfer from cfaed at TU Dresden.

Finally, initial investigations on the spread of cascades in the network were carried out. "Instead of purely geographical distances between different locations, we consider the so-called 'effective distance,’ which takes into account how strongly different parts of the power grid can influence each other. However, in order to gain a better understanding, further research is necessary to examine the possibility of stopping such cascades," explains Schäfer.

Paper: „Dynamically induced cascading failures in power grids”; Benjamin Schäfer, Dirk Witthaut, Marc Timme & Vito Latora; Nature Communications; published 17 May 2018; Open Access
DOI: 10.1038/s41467-018-04287-5
www.doi.org/10.1038/s41467-018-04287-5

Press Pictures:
Fig. 1: https://bit.ly/2x6Jxnm
Fig. 5: https://bit.ly/2GPgswE
Movie (*.gif version): https://bit.ly/2II3LcD
Movie (*.flv version): https://bit.ly/2s9XGdL
Video Caption: The movie illustrates the cascading dynamics for the five-node network discussed in Fig. 1 with two generators and three consumers. On the left, it displays the network with the edges indicating the instantaneous load (color coded). On the right, it shows the flows on each line. If the flow of a line exceeds the threshold, the respective line 'fails' and is removed from the network in the simulation.

Media inquiries:

TU Dresden, Center for Advancing Electronics Dresden:
Prof. Marc Timme
Strategic Chair for Network Dynamics
Tel.: +49 (0)351 463-33846
E-mail: marc.timme@tu-dresden.de

Matthias Hahndorf
Head of Communications
Phone: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de

Forschungszentrum Jülich, Institute for Energy and Climate Research, Systems Analysis and Technology Evaluation:
Jun.-Prof. Dirk Witthaut
Assistant Professorship Physics of Complex Supply Networks (Universität Köln, Institute for Theoretical Physics)
E-mail: d.witthaut@fz-juelich.de

Dr. Regine Panknin
Press Officer
Tel.: +49 (0) 2461 61-9054
E-mail: r.panknin@fz-juelich.de

Queen Mary University of London, School of Mathematical Sciences:
Vito Latora
Professor of Applied Mathematics, Chair of Complex Systems
Tel.: +44 (0) 20 7882 5199
E-mail: v.latora@qmul.ac.uk

Rupert Marquand
Public Relations Officer
Tel: +44 (0) 20 7882 3004
E-Mail: r.marquand@qmul.ac.uk

Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen:
Carolin Hoffrogge
Press Officer
Tel.: +49 (0) 551/5176-668
E-Mail: presse@ds.mpg.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Further reports about: Forschungszentrum Jülich networks power grid

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>