Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Factory networks energy, buildings and production

12.07.2018

In the “ETA Factory” demonstration project, the Technische Universität Darmstadt is researching concepts for multi-networked, industrial production facilities. In the concept, the scientists are integrating the energy flows, building envelope and industrial process chain across technologies and disciplines. The new BINE-Projektinfo brochure entitled “Energy efficient model factory” (03/2018) presents the ETA Factory, which serves as a research object, demonstration facility and place of learning. By shifting the system boundaries between the machines and building, the researchers expect economically feasible energy savings of up to 40%.

Darmstadt model project is testing the production of the future


The production processes include characteristic metal processing procedures.

© TU Darmstadt, Eibe Sönnecken


The BINE-Projektinfo brochure entitled “Energy efficient model factory”

© BINE Informationsdienst

The ETA Factory concept aims to reduce energy consumption and increase load flexibility. This is achieved by treating the energy system for the building and production as a whole.

The production area depicts a typical process chain for metalworking and includes characteristic processes such as machining or grinding. Intelligent control systems ensure that there is always enough energy at the right time and in the right place.

Energy efficiency played an important role in the choice of machine tools used. These are one fifth more efficient than conventional reference systems.

In Darmstadt, an interdisciplinary team from the mechanical engineering, engineering sciences, architecture and communication technology fields is behind the project. Practical experience is provided by joint working groups with various branches of industry.

You found all informations about the BINE Projectinfo brochure entitled “Energy efficient model factory” here:

http://www.bine.info/en/press/press-releases/press/pressemitteilung/fabrik-verne...

Uwe Milles/Dorothee Gintars
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Wissenschaftliche Ansprechpartner:

Uwe Milles/Dorothee Gintars
presse(at)bine.info

Originalpublikation:

The BINE-Projektinfo brochure entitled “Energy efficient model factory” (03/2018)
http://www.bine.info/en/publications/publikation/energieeffiziente-modellfabrik/

Weitere Informationen:

http://www.bine.info/en - BINE Informationsdienst

Rüdiger Mack | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>