Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017

Enzymes play an indispensable role in the efficient conversion of biomass, in particular of agricultural, industrial and municipal waste into fermentable sugars, chemical or bio-based materials. However, an efficient biomass conversion optimized by biochemical feedstock pretreatment, requires the availability of enzymes which have proven themselves in practice and can be produced on an industrial scale. The objective of the EU project DEMETER is the optimization of the enzyme production (yield increase as well as scale-up) and the investigation of their use in the biogas process.

At the end of 2016, the three-year EU project "DEMETER" (Demonstrating more efficient enzyme production to increase biogas yields) started. The research objective is to increase the yield of the industrial production process (fermentation) by 20%, to improve the product recovery process by 40% and to reduce the total production costs by at least 15%.


The project consortium of the DEMETER project on 31 March 2017 at DBFZ

Picture: DBFZ

A key component of the DEMETER project is the testing of a new enzyme product, developed by the project partner Genencor International BV. This enzyme originates from the fermentation of Myceliophthora thermophila (C1) and was able to show a promising cost reduction in the production of biogas from organic waste in preliminary tests. For the first time, the background effects during the addition to the biogas process will be identified, quantified and described in a numerical model.

In this way, a model-based evaluation of a single biogas plant can be carried out and the expected effect can be determined in advance and the efficiency of a biogas plant can be improved by the targeted use of enzymes. Although the efficacy of the novel enzyme has already been demonstrated, the present fermentation process does not yet provide a sufficient yield in industrial production in order to be cost-efficient for large-scale applications.

The focus of DEMETER is on enzyme production process analysis using different conditions (agitation, ventilation, nutrient supply), metabolic analysis through the application of genome technologies and monitoring of the flow behavior (viscosity) as well as morphological changes. This is to identify the limitations of productivity in the process (oxygen supply, nutrient limitations, substrate delivery) and to show possibilities for optimization.

Therefore, the enzyme production is firstly optimized on a laboratory and small pilot scale, while important information is obtained for further scale-up. The improved fermentation and downstream process is then transferred to a 15,000 L pilot plant in Belgium.

In parallel, the effect of enzymes on the biogas yield is quantified using five commonly used biomasses (maize, green grass, sorghum and grass silage, straw) and the organic fraction of municipal waste. Finally, the improvement of the biogas production process is demonstrated by the use of the enzyme in practice in large-scale biogas plants throughout Europe. The results of these practical tests are considered in order to further improve the production process and its yield.

Further information is available at: www.demeter-eu-project.eu

Smart Bioenergy – Innovations for a sustainable future

DBFZ, the German Centre for Biomass Research, works as a central and independent thinker in the field of energy and material use of biomass on the question of how the limited available biomass resources can contribute to the existing and future energy system with sustainability and high efficiency. As part of the research the DBFZ identifies, develops, accompanies, evaluates and demonstrates the most promising fields of application for bioenergy and the especially positively outstanding examples together with partners from research, industry and public.

With the scientific work of the DBFZ, the knowledge of the possibilities and limitations of energy and integrated material use of renewable raw materials in a biobased economy as a whole should be expanded and the outstanding position of the industrial location Germany in this sector permanently secured – www.dbfz.de

Scientific contact:
Liane Müller
Phone: +49 (0)341 2434-418
E-Mail: liane.mueller(at)dbfz(dot)de

Press contact
Paul Trainer
Phone: +49 (0)341 2434-437
E-Mail: paul.trainer(at)dbfz(dot)de

Weitere Informationen:

https://www.demeter-eu-project.eu
https://www.dbfz.de/en/press/press-releases-2017/eu-research-project-demeter-str...

Paul Trainer M.A. | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>