Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-efficient spin current can be controlled by magnetic field and temperature

17.08.2018

SCMR effect simplifies the design of fundamental spintronic components

The transition from light bulbs to LEDs has drastically cut the amount of electricity we use for lighting. Most of the electricity consumed by incandescent bulbs was, after all, dissipated as heat. We may now be on the verge of a comparable breakthrough in electronic computer components.


Up to now, these have been run on electricity, generating unwanted heat. If spin current were employed instead, computers and similar devices could be operated in a much more energy-efficient manner. Dr. Olena Gomonay from Johannes Gutenberg University Mainz (JGU) in Germany and her team together with Professor Eiji Saitoh from the Advanced Institute for Materials Research (AIMR) at Tohoku University in Japan and his work group have now discovered an effect that could make such a transition to spin current a reality. This effect significantly simplifies the design of fundamental spintronic components.

Touching a computer that has been running for some time, you will feel heat. This heat is an – undesirable – side effect of the electric current. Undesirable because the heat generated, naturally, also consumes energy. We are all familiar with this effect from light bulbs, which became so hot after being on for hours that they could burn your fingers.

This is because light bulbs converted only a fraction of the energy required to do their job of creating light. The energy used by LEDs, on the other hand, is almost completely used for lighting, which is why they don’t become hot. This makes LEDs significantly more energy-efficient than traditional incandescent bulbs.

Instead of using an electric current composed of charged particles, a computer using a stream of particles with a spin other than zero could manipulate the material of its components in the same way to perform calculations. The primary difference is that no heat is generated, the processes are much more energy-efficient.

Dr. Olena Gomonay from Mainz University and Professor Eiji Saitoh from Tohoku University have now laid the foundations for using these spin currents. More precisely, they have used the concept of spin currents and applied it to a specific material. Gomonay compares the spin currents involved with how our brains work: "Our brains process immeasurable amounts of information, but they don't heat up in the process. Nature is, therefore, way ahead of us." The team from Mainz is hoping to emulate this model.

Drastic change in current flow

How well spin currents flow depends on the material – just like in the case of electric current. While spin currents can always flow in ferromagnetic materials, in antiferromagnetic materials states with low resistance alternate with those with high resistance. "We have now found a way to control spin currents by means of a magnetic field and temperature, in other words, to control the resistance of an antiferromagnetic system based on spin," explained Gomonay, summarizing her results.

At a temperature close to the phase transition temperature, Gomonay and her team applied a small magnetic field to the material. While the applied magnetic field alters the orientation of the spin currents to allow them to be easily transported through the material, the temperature has precisely two effects. On the one hand, a higher temperature causes more particles of the material to be in excited states, meaning there are more spin carriers that can be transported, which makes spin transport easier. On the other hand, the high temperature makes it possible to operate at a low magnetic field.

Thus the resistance and the current flow change drastically by several orders of magnitude. "This effect, which we call spin colossal magnetoresistance or SCMR for short, has the potential to simplify the design of fundamental spintronic components significantly," explained the scientist from Mainz. This is particularly interesting for storage devices such as hard disks. This effect might be employed, for example, to create spin current switches as well as spin current based storage media.

Wissenschaftliche Ansprechpartner:

Dr. Olena Gomonay
INSPIRE – Interdisciplinary Spintronics Research
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23643
e-mail: ogomonay@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/team/olena-gomonay/

Elena Hilp
INSPIRE – Interdisciplinary Spintronics Research
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-21259
e-mail: spice@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/

Originalpublikation:

Z. Qiu et al., Spin colossal magnetoresistance in an antiferromagnetic insulator, Nature Materials 17, 577-580, 28 May 2018,
DOI:10.1038/s41563-018-0087-4
https://www.nature.com/articles/s41563-018-0087-4

Weitere Informationen:

https://www.sinova-group.physik.uni-mainz.de/ – Interdisciplinary Spintronics Research group (INSPIRE) at JGU ;
https://www.spice.uni-mainz.de/ – Spin Phenomena Interdisciplinary Center (SPICE) at JGU ;
https://www.blogs.uni-mainz.de/fb08-iph-eng/ – JGU Institute of Physics

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>