Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy-efficient spin current can be controlled by magnetic field and temperature

17.08.2018

SCMR effect simplifies the design of fundamental spintronic components

The transition from light bulbs to LEDs has drastically cut the amount of electricity we use for lighting. Most of the electricity consumed by incandescent bulbs was, after all, dissipated as heat. We may now be on the verge of a comparable breakthrough in electronic computer components.


Up to now, these have been run on electricity, generating unwanted heat. If spin current were employed instead, computers and similar devices could be operated in a much more energy-efficient manner. Dr. Olena Gomonay from Johannes Gutenberg University Mainz (JGU) in Germany and her team together with Professor Eiji Saitoh from the Advanced Institute for Materials Research (AIMR) at Tohoku University in Japan and his work group have now discovered an effect that could make such a transition to spin current a reality. This effect significantly simplifies the design of fundamental spintronic components.

Touching a computer that has been running for some time, you will feel heat. This heat is an – undesirable – side effect of the electric current. Undesirable because the heat generated, naturally, also consumes energy. We are all familiar with this effect from light bulbs, which became so hot after being on for hours that they could burn your fingers.

This is because light bulbs converted only a fraction of the energy required to do their job of creating light. The energy used by LEDs, on the other hand, is almost completely used for lighting, which is why they don’t become hot. This makes LEDs significantly more energy-efficient than traditional incandescent bulbs.

Instead of using an electric current composed of charged particles, a computer using a stream of particles with a spin other than zero could manipulate the material of its components in the same way to perform calculations. The primary difference is that no heat is generated, the processes are much more energy-efficient.

Dr. Olena Gomonay from Mainz University and Professor Eiji Saitoh from Tohoku University have now laid the foundations for using these spin currents. More precisely, they have used the concept of spin currents and applied it to a specific material. Gomonay compares the spin currents involved with how our brains work: "Our brains process immeasurable amounts of information, but they don't heat up in the process. Nature is, therefore, way ahead of us." The team from Mainz is hoping to emulate this model.

Drastic change in current flow

How well spin currents flow depends on the material – just like in the case of electric current. While spin currents can always flow in ferromagnetic materials, in antiferromagnetic materials states with low resistance alternate with those with high resistance. "We have now found a way to control spin currents by means of a magnetic field and temperature, in other words, to control the resistance of an antiferromagnetic system based on spin," explained Gomonay, summarizing her results.

At a temperature close to the phase transition temperature, Gomonay and her team applied a small magnetic field to the material. While the applied magnetic field alters the orientation of the spin currents to allow them to be easily transported through the material, the temperature has precisely two effects. On the one hand, a higher temperature causes more particles of the material to be in excited states, meaning there are more spin carriers that can be transported, which makes spin transport easier. On the other hand, the high temperature makes it possible to operate at a low magnetic field.

Thus the resistance and the current flow change drastically by several orders of magnitude. "This effect, which we call spin colossal magnetoresistance or SCMR for short, has the potential to simplify the design of fundamental spintronic components significantly," explained the scientist from Mainz. This is particularly interesting for storage devices such as hard disks. This effect might be employed, for example, to create spin current switches as well as spin current based storage media.

Wissenschaftliche Ansprechpartner:

Dr. Olena Gomonay
INSPIRE – Interdisciplinary Spintronics Research
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23643
e-mail: ogomonay@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/team/olena-gomonay/

Elena Hilp
INSPIRE – Interdisciplinary Spintronics Research
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-21259
e-mail: spice@uni-mainz.de
https://www.sinova-group.physik.uni-mainz.de/

Originalpublikation:

Z. Qiu et al., Spin colossal magnetoresistance in an antiferromagnetic insulator, Nature Materials 17, 577-580, 28 May 2018,
DOI:10.1038/s41563-018-0087-4
https://www.nature.com/articles/s41563-018-0087-4

Weitere Informationen:

https://www.sinova-group.physik.uni-mainz.de/ – Interdisciplinary Spintronics Research group (INSPIRE) at JGU ;
https://www.spice.uni-mainz.de/ – Spin Phenomena Interdisciplinary Center (SPICE) at JGU ;
https://www.blogs.uni-mainz.de/fb08-iph-eng/ – JGU Institute of Physics

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>