Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy: Dyes help harvest light

04.08.2014

A new dye-sensitized solar cell absorbs a broad range of visible and infrared wavelengths.

Dye-sensitized solar cells (DSSCs) rely on dyes that absorb light to mobilize a current of electrons and are a promising source of clean energy.


Zinc porphyrin dyes were used to create solar cells that can absorb both visible and near-infrared light.

© 2014 A*STAR Institute of Materials Research and Engineering

Jishan Wu at the A*STAR Institute of Materials Research and Engineering and colleagues in Singapore have now developed zinc porphyrin dyes that harvest light in both the visible and near-infrared parts of the spectrum[1]. Their research suggests that chemical modification of these dyes could enhance the energy output of DSSCs.

DSSCs are easier and cheaper to manufacture than conventional silicon solar cells, but they currently have a lower efficiency. Ruthenium-based dyes have been traditionally used in DSSCs, but in 2011 researchers developed a more efficient dye based on a zinc atom surrounded by a ring-shaped molecule called a porphyrin.

Solar cells using this new dye, called YD2-o-C8, convert visible light into electricity with an efficiency of up to 12.3 per cent. Wu’s team aimed to improve that efficiency by developing a zinc porphyrin dye that can also absorb infrared light.

The most successful dyes developed by Wu’s team, WW-5 and WW-6, unite a zinc porphyrin core with a system of fused carbon rings bridged by a nitrogen atom, known as an N-annulated perylene group. Solar cells containing these dyes absorbed more infrared light than YD2-o-C8 and had efficiencies of up to 10.5 per cent, matching the performance of an YD2-o-C8 cell under the same testing conditions (see image).

Theoretical calculations indicate that connecting the porphyrin and perylene sections of these dyes by a carbon–carbon triple bond, which acts as an electron-rich linker, improved the flow of electrons between them. This bond also reduced the light energy needed to excite electrons in the molecule, boosting the dye’s ability to harvest infrared light.

Adding bulky chemical groups to the dyes also improved their solubility and prevented them from aggregating — something that tends to reduce the efficiency of DSSCs.

However, both WW-5 and WW-6 are slightly less efficient than YD2-o-C8 at converting visible light into electricity, and they also produce a lower voltage. “We are now trying to solve this problem through modifications based on the chemical structure of WW-5 and WW-6,” says Wu.

Comparing the results from more perylene–porphyrin dyes should indicate ways to overcome these hurdles, and may even extend light absorption further into the infrared. “The top priority is to improve the power conversion efficiency,” says Wu. “Our target is to push the efficiency to more than 13 per cent in the near future.”

Reference

1. Luo, J., Xu, M., Li, R., Huang, K.-W., Jiang, C. et al. N-annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. Journal of the American Chemical Society 136, 265–272 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7006
http://www.researchsea.com

Further reports about: A*STAR Energy Technology electricity electrons modification porphyrin structure zinc

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>