Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric-field-controlled superconductor-ferromagnetic insulator transition

28.05.2019

High-temperature (Tc) superconductivity typically develops from antiferromagnetic insulators, and superconductivity and ferromagnetism are always mutually exclusive.

Recently, Xianhui Chen's group at University of Science and Technology of China observed an electric-field controlled reversible transition from superconductor to ferromagnetic insulator in (Li,Fe)OHFeSe thin flake.


This is the phase diagram of the gate-tuned (Li,Fe)OHFeSe thin flake.

Credit: ©Science China Press

This work offers a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors and may provide some clue about understanding the electron pairing mechanism beyond conventional electron-phonon superconductivity.

The relationship between superconductivity and magnetism is key to understanding the electron pairing mechanism beyond conventional electron-phonon superconductivity.

Controlling the magnetism near the superconducting region could explain the competing or intertwined electronic states in superconducting and magnetic phases. Modulating carrier density via field electric transistors (FET) is one of the most effective ways to manipulating the collectively ordered electronic states in condensed matter physics.

However, only the carrier concentration on the surface of materials can be tuned with conventional gating technique and controlling the charge density in the bulk is plagued due to the Thomas-Fermi screening. Recently, a new type of FET has been developed using solid ion conductor (SIC) as the gate dielectric. In such a SIC-FET, the electric field can not only tune the carrier density to induce electronic phase transitions, but also drive ions into a crystal to transform it from one crystalline phase to another.

By this new developed gating technique, Xianhui Chen's group at University of Science and Technology of China observed an electric-field controlled reversible transition from superconductor to ferromagnetic insulator in (Li,Fe)OHFeSe thin flake. Using SIC-FET, Li ions can be driven into or extracted out from the (Li,Fe)OHFeSe thin flake by electric field.

When the Li ions are initially driven into the thin flake, Li ions replace the Fe in the hydroxide layers and the Fe ions expelled by Li can migrate away from the hydroxide layers to fill the vacancies in the selenide layers.

Once the vacancies are filled, the thin flake achieves the optimal Tc ~ 43 K. With further Li injection, the Fe ions extruded from the hydroxide layers migrate to the interstitial sites, and then the interstitial Fe ions become ordered and eventually lead to a long-range ferromagnetic order.

So, a dome-shaped superconducting phase with optimal Tc (= 43 K) is continuously tuned into a ferromagnetic insulating phase, which exhibits an electric-field-controlled quantum critical behavior.

The device is fabricated on a solid ion conductor, which can reversibly manipulate collectively ordered electronic states of the materials and stabilize new metastable structures by electric field.

This work paves a way to access metastable phases and to control structural phase transformation as well as physical properties by the electric field.

These surprising findings offer a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors. This work also demonstrates the superior performance of SIC-FET in regulating the physical properties of layered crystals and its potential applications for multifunctional devices.

###

This work is supported by the National Key R & D Program of China (Grant Nos.2017YFA0303001 and 2016YFA0300201), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB25010100), the National Natural Science Foundation of China (Grant No. 11888101, 11534010), Science Challenge Project (Grants No. TZ2016004) and Hefei Science Center CAS (2016HSC-IU001).

See the article: Likuan Ma, Bin Lei, Naizhou Wang, Kaishuai Yang, Dayong Liu, Fanbao Meng, Chao Shang, Zeliang Sun, Jianhua Cui, Changsheng Zhu, Tao Wu, Zhe Sun, Liangjian Zou, Xianhui Chen. Electric-field controlled superconductor-ferromagnetic insulator transition. Science Bulletin, 2019, 64(10) 653-658.

https://www.sciencedirect.com/science/article/pii/S2095927319302269

X. H. Chen | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2019.04.022

More articles from Power and Electrical Engineering:

nachricht First-ever visualizations of electrical gating effects on electronic structure
18.07.2019 | University of Warwick

nachricht New safer, inexpensive way to propel small satellites
16.07.2019 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>